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Major challenges of Electron-Ion Collision streaming data acquisition

EIC CDR Fig. 8.27: Diagram of the detector readout
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I Experiment data may be
noisy

I Experiment data can be
too large and expensive
to fit in persistent storage
limit
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Goal

Using machine learning for
data compression and noise
filtering.



Introduction
Time projection chamber (TPC) data

I Time projection chamber is a popular
choice of main tracking detector for both
RHIC and EIC experiments.

I Compression: TPC data dominates the
data volume

I Noise filtering: TPC data may contain
a high amount of noise (> 50%) from the
experiment background

I High throughput to match TPC data
taking

sPHENIX @ RHIC, 2023-2025
https://indico.mit.edu/

event/1/contributions/73/

One of the EIC detector concepts, ∼2030
https://indico.mit.edu/

event/1/contributions/75/

https://indico.mit.edu/event/1/contributions/73/
https://indico.mit.edu/event/1/contributions/73/
https://indico.mit.edu/event/1/contributions/75/
https://indico.mit.edu/event/1/contributions/75/


Introduction
TPC data in this study

Detector model Detector simulation An example of
TPC data frame

Preparing for the toughest

In this study, we use the 10% central Au + Au collision with 170kHz pile up,
which is busiest event in sPHENIX.
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Time projection chamber zoom-in

z

48 layers, 16 each



Time projection chamber zoom-in

2304 colums

1536 columns

1152 columns

498 rows



The Amount of Data Generated by TPC

I Data format: 10-bit integer (ADC value range ∈ [0, 1023])

I Number of voxels: (azimuth× z× layer)
I Outer layer group: 2304× 498× 16 ≈ 18M;
I Middle layer group: 1536× 498× 16 ≈ 12M;
I Inner layer group: 1152× 498× 16 ≈ 9M

I Digitization frequency: 20MHz;
Frame Frequency: 80KHz

Uncompressed data rate: ∼30 Tera bits per second

Average compressed data rate via SAMPA ASIC: ∼ 2Tbps
[Thursday morning talk by Takao Sakaguchi]
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Lossy Compression Algorithms

There are many existing compression algorithms designed for simulation-heavy
scientific data represented by dense matrices of high-precision floating-point values.

I SZ: Error-bounded lossy compressor for HPC data
https://github.com/szcompressor/SZ

I ZFP: Compressor for integer and floating-point data stored in
multidimensional arrays
https://github.com/LLNL/zfp

I MGARD: MultiGrid adaptive reduction of data
https://github.com/CODARcode/MGARD

Problems with existing compressors

Hand-crafted and manually-tuned to suit data, missing learnable noise filtering.

https://github.com/szcompressor/SZ
https://github.com/LLNL/zfp
https://github.com/CODARcode/MGARD
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Convolutional Neural Encoder
What is that and why we think it should work

I Artificial neural network (ANN)
(an ANN helps machine learn a function

just as a nervous system does for a living

organism)

I Convolutional neural network
(an ANN architecture that can handle high

volume image data)

I Auto encoder
(an ANN encoder learns its own encoding

rule with the help from a ANN decoder)
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Convolutional Neural Encoder
What is that and why we think it should work

I Artificial neural network (ANN)
(an ANN helps machine learn a function

just as a nervous system does for a living

organism)

I Convolutional neural network
(an ANN architecture that can handle high

volume image data)

I Auto encoder
(an ANN encoder learns its own encoding

rule with the help from a ANN decoder)

Desirable properties of a neural encoder

Data-driven coding rule to optimize domain specific tasks, such as noise filtering.



Example of on-going auto-encoder study in modern data acquisition

Auto-encode evaluated for on-detector data compression for CMS HGC
[Reference to talk: https://indico.fnal.gov/event/46746/contributions/210450/]

Compact Muon Solenoid
High-Granularity Calorimeter

Proposed data flow with auto-encoder on
application-specific integrated circuit

https://indico.fnal.gov/event/46746/contributions/210450/


Convolutional Neural Encoder
A basic idea

4 convolutional layers
LeakyReLU activation
batch normalization

Encoder E

4 deconvolutional layers
LeakyReLU activation
batch normalization

Decoder D

Mean squared error

Loss

Compressed Data (float16) Decompressed Data

I The encoder network E compresses the data;

I The decoder network D decompresses the compressed data;

I The encoder and decoder are trained in an end-to-end fashion.

I Suitable for training with real data.
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A basic idea

4 convolutional layers
LeakyReLU activation
batch normalization

Encoder E

4 deconvolutional layers
LeakyReLU activation
batch normalization

Decoder D

Mean squared error

Loss

Compressed Data (float16) Decompressed Data

data

feedback
(in the form of gardient)

I The encoder network E compresses the data;

I The decoder network D decompresses the compressed data;

I The encoder and decoder are trained in an end-to-end fashion.

I Suitable for training with real data.



Convolutional Neural Encoder
Problem with the basic idea
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Not the most friendly to NN
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Convolutional Neural Encoder
A better solution: double decoders

4 convolutional layers
LeakyReLU activation
batch normalization

Encoder E

4 deconvolutional layers
ReLU activation

batch normalization
Sigmoid output

Clf. Decoder Dc

4 deconvolutional layers
LeakyReLU activation
batch normalization

ReLU output

Reg. Decoder Dr

Weighted `2 error

Clf. loss

Mean squared error

Reg. loss

+

I Classification decoder Dc learns to recognize truth signal

I Regression decoder Dr learns to approximate the value of truth signal

I Decompressed data = regression masked by classification ⇒ Noise Filtering
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Convolutional Neural Encoder
Input

I a 30◦ degree sector along the
azimuth direction (192 columns for
the outer layer group)

I a half the z-direction (249 rows)

I one layer group (16 layers)

30◦

249



Convolutional Neural Encoder
Results I: Compression ratio and mean squared error

I Compression ratio is 1 : 27
(1 : 3 for ASIC for this busiest event)

I Mean squared error ≈ 1600ADU2



Convolutional Neural Encoder
Results I: Compression ratio and mean squared error

I Compression ratio is 1 : 27
(1 : 3 for ASIC for this busiest event)

I Mean squared error ≈ 1600ADU2

MSE is still quite large. We need to do more study on how to adjust the network to
handle data with a sharp zero suppression cut-off ⇒ expect improved MSE.



Convolutional Neural Encoder
Results II: 3d original v.s. decompressed

Original Decompressed

Global feature is well reproduced. Local variations are still to be quantified in
downstream analysis.



Convolutional Neural Encoder
Results III: 2d sections original v.s. decompressed



Convolutional Neural Encoder
Results III: 2d sections original v.s. decompressed, cont.

Prominent patterns in azimuth-layer slice are cor-

responding to curved low momentum track.



Summary and Future Direction

I Testing auto-encoder-based compression and noise filtering network on highest
occupancy TPC data.

I Reach 1 : 27 compression ratio while preserve the general features.

I Future directions:
I Optimizing the depth of the network
I Optimizing the shape of the CNN kernels
I Integrating simulation ground truth into the training to improve noise rejection.
I Working well for downstream applications (for example: clustering and tracking

efficiency and position resolution)
I Data acquisition hardware integration
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