
ML Data Compression and Noise Filtering for Real-Time
Computing

Speaker: Yi Huang?

Collaborators: Yihui Ren?, Jin Huang†

Brookhaven National Laboratory
?Computational Science Initiative and †Physics Department

April 29, 2021



Introduction
Major challenges of Electron-Ion Collision streaming data acquisition

EIC CDR Fig. 8.27: Diagram of the detector readout

and DAQ system

I Experiment data may be
noisy

I Experiment data can be
too large and expensive
to fit in persistent storage
limit



Introduction
Major challenges of Electron-Ion Collision streaming data acquisition

EIC CDR Fig. 8.27: Diagram of the detector readout

and DAQ system

I Experiment data may be
noisy

I Experiment data can be
too large and expensive
to fit in persistent storage
limit



Introduction
Major challenges of Electron-Ion Collision streaming data acquisition

EIC CDR Fig. 8.27: Diagram of the detector readout

and DAQ system

I Experiment data may be
noisy

I Experiment data can be
too large and expensive
to fit in persistent storage
limit



Introduction
Major challenges of Electron-Ion Collision streaming data acquisition

EIC CDR Fig. 8.27: Diagram of the detector readout

and DAQ system

BW: O(10)Tbps

BW: O(.1)Tbps
I Experiment data may be

noisy

I Experiment data can be
too large and expensive
to fit in persistent storage
limit



Introduction
Major challenges of Electron-Ion Collision streaming data acquisition

EIC CDR Fig. 8.27: Diagram of the detector readout

and DAQ system

I Experiment data may be
noisy

I Experiment data can be
too large and expensive
to fit in persistent storage
limit

Goal

Using machine learning for
data compression and noise
filtering.



Introduction
Time projection chamber (TPC) data

I Time projection chamber is a popular
choice of main tracking detector for both
RHIC and EIC experiments.

I Compression: TPC data dominates the
data volume

I Noise filtering: TPC data may contain
a high amount of noise (> 50%) from the
experiment background

I High throughput to match TPC data
taking

sPHENIX @ RHIC, 2023-2025
https://indico.mit.edu/

event/1/contributions/73/

One of the EIC detector concepts, ∼2030
https://indico.mit.edu/

event/1/contributions/75/

https://indico.mit.edu/event/1/contributions/73/
https://indico.mit.edu/event/1/contributions/73/
https://indico.mit.edu/event/1/contributions/75/
https://indico.mit.edu/event/1/contributions/75/


Introduction
TPC data in this study

Detector model Detector simulation An example of
TPC data frame

Preparing for the toughest

In this study, we use the 10% central Au + Au collision with 170kHz pile up,
which is busiest event in sPHENIX.



Introduction
TPC data in this study

Detector model Detector simulation An example of
TPC data frame

Preparing for the toughest

In this study, we use the 10% central Au + Au collision with 170kHz pile up,
which is busiest event in sPHENIX.



Time projection chamber zoom-in

z

48 layers, 16 each



Time projection chamber zoom-in

2304 colums

1536 columns

1152 columns

498 rows



The Amount of Data Generated by TPC

I Data format: 10-bit integer (ADC value range ∈ [0, 1023])

I Number of voxels: (azimuth× z× layer)
I Outer layer group: 2304× 498× 16 ≈ 18M;
I Middle layer group: 1536× 498× 16 ≈ 12M;
I Inner layer group: 1152× 498× 16 ≈ 9M

I Digitization frequency: 20MHz;
Frame Frequency: 80KHz

Uncompressed data rate: ∼30 Tera bits per second

Average compressed data rate via SAMPA ASIC: ∼ 2Tbps
[Thursday morning talk by Takao Sakaguchi]



The Amount of Data Generated by TPC

I Data format: 10-bit integer (ADC value range ∈ [0, 1023])

I Number of voxels: (azimuth× z× layer)
I Outer layer group: 2304× 498× 16 ≈ 18M;
I Middle layer group: 1536× 498× 16 ≈ 12M;
I Inner layer group: 1152× 498× 16 ≈ 9M

I Digitization frequency: 20MHz;
Frame Frequency: 80KHz

Uncompressed data rate: ∼30 Tera bits per second

Average compressed data rate via SAMPA ASIC: ∼ 2Tbps
[Thursday morning talk by Takao Sakaguchi]



The Amount of Data Generated by TPC

I Data format: 10-bit integer (ADC value range ∈ [0, 1023])

I Number of voxels: (azimuth× z× layer)
I Outer layer group: 2304× 498× 16 ≈ 18M;
I Middle layer group: 1536× 498× 16 ≈ 12M;
I Inner layer group: 1152× 498× 16 ≈ 9M

I Digitization frequency: 20MHz;
Frame Frequency: 80KHz

Uncompressed data rate: ∼30 Tera bits per second

Average compressed data rate via SAMPA ASIC: ∼ 2Tbps
[Thursday morning talk by Takao Sakaguchi]



Lossy Compression Algorithms

There are many existing compression algorithms designed for simulation-heavy
scientific data represented by dense matrices of high-precision floating-point values.

I SZ: Error-bounded lossy compressor for HPC data
https://github.com/szcompressor/SZ

I ZFP: Compressor for integer and floating-point data stored in
multidimensional arrays
https://github.com/LLNL/zfp

I MGARD: MultiGrid adaptive reduction of data
https://github.com/CODARcode/MGARD

Problems with existing compressors

Hand-crafted and manually-tuned to suit data, missing learnable noise filtering.

https://github.com/szcompressor/SZ
https://github.com/LLNL/zfp
https://github.com/CODARcode/MGARD


Lossy Compression Algorithms

There are many existing compression algorithms designed for simulation-heavy
scientific data represented by dense matrices of high-precision floating-point values.

I SZ: Error-bounded lossy compressor for HPC data
https://github.com/szcompressor/SZ

I ZFP: Compressor for integer and floating-point data stored in
multidimensional arrays
https://github.com/LLNL/zfp

I MGARD: MultiGrid adaptive reduction of data
https://github.com/CODARcode/MGARD

Problems with existing compressors

Hand-crafted and manually-tuned to suit data, missing learnable noise filtering.

https://github.com/szcompressor/SZ
https://github.com/LLNL/zfp
https://github.com/CODARcode/MGARD


Convolutional Neural Encoder
What is that and why we think it should work

I Artificial neural network (ANN)
(an ANN helps machine learn a function

just as a nervous system does for a living

organism)

I Convolutional neural network
(an ANN architecture that can handle high

volume image data)

I Auto encoder
(an ANN encoder learns its own encoding

rule with the help from a ANN decoder)



Convolutional Neural Encoder
What is that and why we think it should work

I Artificial neural network (ANN)
(an ANN helps machine learn a function

just as a nervous system does for a living

organism)

I Convolutional neural network
(an ANN architecture that can handle high

volume image data)

I Auto encoder
(an ANN encoder learns its own encoding

rule with the help from a ANN decoder)



Convolutional Neural Encoder
What is that and why we think it should work

I Artificial neural network (ANN)
(an ANN helps machine learn a function

just as a nervous system does for a living

organism)

I Convolutional neural network
(an ANN architecture that can handle high

volume image data)

I Auto encoder
(an ANN encoder learns its own encoding

rule with the help from a ANN decoder)



Convolutional Neural Encoder
What is that and why we think it should work

I Artificial neural network (ANN)
(an ANN helps machine learn a function

just as a nervous system does for a living

organism)

I Convolutional neural network
(an ANN architecture that can handle high

volume image data)

I Auto encoder
(an ANN encoder learns its own encoding

rule with the help from a ANN decoder)

Desirable properties of a neural encoder

Data-driven coding rule to optimize domain specific tasks, such as noise filtering.



Example of on-going auto-encoder study in modern data acquisition

Auto-encode evaluated for on-detector data compression for CMS HGC
[Reference to talk: https://indico.fnal.gov/event/46746/contributions/210450/]

Compact Muon Solenoid
High-Granularity Calorimeter

Proposed data flow with auto-encoder on
application-specific integrated circuit

https://indico.fnal.gov/event/46746/contributions/210450/


Convolutional Neural Encoder
A basic idea

4 convolutional layers
LeakyReLU activation
batch normalization

Encoder E

4 deconvolutional layers
LeakyReLU activation
batch normalization

Decoder D

Mean squared error

Loss

Compressed Data (float16) Decompressed Data

I The encoder network E compresses the data;

I The decoder network D decompresses the compressed data;

I The encoder and decoder are trained in an end-to-end fashion.

I Suitable for training with real data.



Convolutional Neural Encoder
A basic idea

4 convolutional layers
LeakyReLU activation
batch normalization

Encoder E

4 deconvolutional layers
LeakyReLU activation
batch normalization

Decoder D

Mean squared error

Loss

Compressed Data (float16) Decompressed Data

I The encoder network E compresses the data;

I The decoder network D decompresses the compressed data;

I The encoder and decoder are trained in an end-to-end fashion.

I Suitable for training with real data.



Convolutional Neural Encoder
A basic idea

4 convolutional layers
LeakyReLU activation
batch normalization

Encoder E

4 deconvolutional layers
LeakyReLU activation
batch normalization

Decoder D

Mean squared error

Loss

Compressed Data (float16) Decompressed Data

I The encoder network E compresses the data;

I The decoder network D decompresses the compressed data;

I The encoder and decoder are trained in an end-to-end fashion.

I Suitable for training with real data.



Convolutional Neural Encoder
A basic idea

4 convolutional layers
LeakyReLU activation
batch normalization

Encoder E

4 deconvolutional layers
LeakyReLU activation
batch normalization

Decoder D

Mean squared error

Loss

Compressed Data (float16) Decompressed Data

I The encoder network E compresses the data;

I The decoder network D decompresses the compressed data;

I The encoder and decoder are trained in an end-to-end fashion.

I Suitable for training with real data.



Convolutional Neural Encoder
A basic idea

4 convolutional layers
LeakyReLU activation
batch normalization

Encoder E

4 deconvolutional layers
LeakyReLU activation
batch normalization

Decoder D

Mean squared error

Loss

Compressed Data (float16) Decompressed Data

data

feedback
(in the form of gardient)

I The encoder network E compresses the data;

I The decoder network D decompresses the compressed data;

I The encoder and decoder are trained in an end-to-end fashion.

I Suitable for training with real data.



Convolutional Neural Encoder
Problem with the basic idea

0 2 4 6 8 10
102

103

104

105

106

log2(ADC value + 1)

co
u

n
t

The distribution:

I is bi-modal

I is unbalanced

I is skewed (having a sharp
edge at 6)

I has a long and slender tail

Not the most friendly to NN



Convolutional Neural Encoder
Problem with the basic idea

0 2 4 6 8 10
102

103

104

105

106

log2(ADC value + 1)

co
u

n
t

The distribution:

I is bi-modal

I is unbalanced

I is skewed (having a sharp
edge at 6)

I has a long and slender tail

Not the most friendly to NN



Convolutional Neural Encoder
Problem with the basic idea

0 2 4 6 8 10
102

103

104

105

106

log2(ADC value + 1)

co
u

n
t

The distribution:

I is bi-modal

I is unbalanced

I is skewed (having a sharp
edge at 6)

I has a long and slender tail

Not the most friendly to NN



Convolutional Neural Encoder
A better solution: double decoders

4 convolutional layers
LeakyReLU activation
batch normalization

Encoder E

4 deconvolutional layers
ReLU activation

batch normalization
Sigmoid output

Clf. Decoder Dc

4 deconvolutional layers
LeakyReLU activation
batch normalization

ReLU output

Reg. Decoder Dr

Weighted `2 error

Clf. loss

Mean squared error

Reg. loss

+

I Classification decoder Dc learns to recognize truth signal

I Regression decoder Dr learns to approximate the value of truth signal

I Decompressed data = regression masked by classification ⇒ Noise Filtering



Convolutional Neural Encoder
A better solution: double decoders

4 convolutional layers
LeakyReLU activation
batch normalization

Encoder E

4 deconvolutional layers
ReLU activation

batch normalization
Sigmoid output

Clf. Decoder Dc

4 deconvolutional layers
LeakyReLU activation
batch normalization

ReLU output

Reg. Decoder Dr

Weighted `2 error

Clf. loss

Mean squared error

Reg. loss

+

I Classification decoder Dc learns to recognize truth signal

I Regression decoder Dr learns to approximate the value of truth signal

I Decompressed data = regression masked by classification ⇒ Noise Filtering



Convolutional Neural Encoder
A better solution: double decoders

4 convolutional layers
LeakyReLU activation
batch normalization

Encoder E

4 deconvolutional layers
ReLU activation

batch normalization
Sigmoid output

Clf. Decoder Dc

4 deconvolutional layers
LeakyReLU activation
batch normalization

ReLU output

Reg. Decoder Dr

Compressed Data (float16)

Weighted `2 error

Clf. loss

Mean squared error

Reg. loss

+

Decompressed Data

I Classification decoder Dc learns to recognize truth signal

I Regression decoder Dr learns to approximate the value of truth signal

I Decompressed data = regression masked by classification ⇒ Noise Filtering



Convolutional Neural Encoder
Input

I a 30◦ degree sector along the
azimuth direction (192 columns for
the outer layer group)

I a half the z-direction (249 rows)

I one layer group (16 layers)

30◦

249



Convolutional Neural Encoder
Results I: Compression ratio and mean squared error

I Compression ratio is 1 : 27
(1 : 3 for ASIC for this busiest event)

I Mean squared error ≈ 1600ADU2



Convolutional Neural Encoder
Results I: Compression ratio and mean squared error

I Compression ratio is 1 : 27
(1 : 3 for ASIC for this busiest event)

I Mean squared error ≈ 1600ADU2

MSE is still quite large. We need to do more study on how to adjust the network to
handle data with a sharp zero suppression cut-off ⇒ expect improved MSE.



Convolutional Neural Encoder
Results II: 3d original v.s. decompressed

Original Decompressed

Global feature is well reproduced. Local variations are still to be quantified in
downstream analysis.



Convolutional Neural Encoder
Results III: 2d sections original v.s. decompressed



Convolutional Neural Encoder
Results III: 2d sections original v.s. decompressed, cont.

Prominent patterns in azimuth-layer slice are cor-

responding to curved low momentum track.



Summary and Future Direction

I Testing auto-encoder-based compression and noise filtering network on highest
occupancy TPC data.

I Reach 1 : 27 compression ratio while preserve the general features.

I Future directions:
I Optimizing the depth of the network
I Optimizing the shape of the CNN kernels
I Integrating simulation ground truth into the training to improve noise rejection.
I Working well for downstream applications (for example: clustering and tracking

efficiency and position resolution)
I Data acquisition hardware integration



Summary and Future Direction

I Testing auto-encoder-based compression and noise filtering network on highest
occupancy TPC data.

I Reach 1 : 27 compression ratio while preserve the general features.

I Future directions:
I Optimizing the depth of the network
I Optimizing the shape of the CNN kernels
I Integrating simulation ground truth into the training to improve noise rejection.
I Working well for downstream applications (for example: clustering and tracking

efficiency and position resolution)
I Data acquisition hardware integration


