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Outline

Ø Motivation 
ü Examples from HEP experiments at LHC
ü EIC experiment

Ø ANN in FPGA 
Ø ML in FPGA for physicists
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ü Offline PID analysis with ML (root / TMVA)
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ü Run  ML on  FPGA

Ø Optimization ML in FPGA  with  hls4ml package
Ø Global PID with multiple PID detectors
Ø Hardware solutions
Ø Outlook
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Motivation

• With increase of luminosity for accelerator colliders as well as a granularity of detectors for particle physics, 
more challenges fall on the readout system and data transfer from detector front-end to computer farm and 
long term storage. 

• Concepts of trigger-less readout and data streaming will produce  large data volumes being read from the 
detectors. 

• From a resource standpoint, it makes much more sense to perform data pre-processing and reduction at early 
stages of data streaming.     Would allow to use information-rich data sets  for event  selection. 
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Example from CMS

• CMS bandwidth: Phase-2 ~50 Tb/s (1.8TB/s in 
Phase-1) 

• The task of the real-time processing is to filter 
events to reduce data rates to manageable 
levels for offline processing.

• Level-1 typically uses custom 
hardware with ASICs or FPGAs 
(decision ~4 !s)

• The second stage of triggering, 
High Level Trigger (HLT), uses 
commercial CPUs to process the 
filtered data in software. 
(decision ~100 000 !s )
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Motivation 
• The growing computational power of modern FPGA boards allows us to add more sophisticated algorithms for real time data processing. 

• Many tasks could be solved using modern Machine Learning (ML) algorithms which are naturally suited for FPGA architectures.

Level 1 works with Regional and sub-detector 
Trigger primitives 

Using ML on FPGA many tasks from Level 2 and/or 
Level 3 can be performed at Level 1

Fast Machine Learning,10-13 September 2019, Fermilab
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ML in physics
✦ Machine learning methods are widely used and have proven to be very powerful in particle physics.

✦ Although the methods of machine learning and artificial intelligence are developed by many groups and 
have a lot in common, nevertheless, the hardware used and performance is different:

1) CPU only
2) CPU and GPU accelerator
3) CPU and FPGA accelerator
4) pure FPGA

✦ While the large numerical processing capability of GPUs is attractive, these technologies are optimized for 
high throughput, not low latency. 

✦ FPGA-based trigger and data acquisition systems have extremely low, sub-microsecond latency 
requirements that are unique to particle physics. 

✦ Definitely FPGA can work on a computer farm as an ML accelerator, but the internal FPGA performance 
will be degraded due to slow I/O through the computer and the PCIe bus. Not to mention the latency, 
which will increase by 2-3 orders of magnitude.

✦ Therefore, the most effective would be the use of ML-FPGA directly between the front-end stream and a 
computer farm, on which it is already more efficient to use the CPU and GPU for ML/AI.
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✦ The correct location for the ML on the FPGA 
filter is called "FEP" in this figure.

✦ This gives us a chance to reduce traffic earlier.

✦ Allows us to touch physics: ML brings 
intelligence to L1.

✦ However, it is now unclear how far we can go 
with physics at the FPGA.

✦ Initially, we can start in pass-through mode.

✦ Then we can add background rejection.

✦ Later we can add filtering processes with the 
largest cross section.

✦ In case of problems with output traffic, we can 
add a  selector for low cross section processes.

✦ The ML-on-FPGA solution complements the 
purely computer-based solution and mitigates 
DAQ performance risks.
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Filter design proposal
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Beam test with GEMTRD and eCAL
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Beam setup at JLab Hall-D

• Tests were carried out using electrons with an energy of 3-6 GeV, 
produced in the converter of a pair spectrometer at the upstream of  
GlueX  detector.
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GEM-TRD  prototype 
• A test module was built at the University of Virginia
• The prototype of GEMTRD/T module has a size of 10 

cm × 10 cm with a corresponding to a total of 512 
channels for X/Y coordinates. 

• The readout is based on flash ADC system developed 
at JLAB (fADC125)  @125 MHz sampling.

• GEM-TRD provides e/hadron separation and tracking
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GEMTRD clusters on the track
GEM-TRD can work as mini TPC, providing 3D track segments
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GEMTRD offline analysis

• For data analysis we used a neural network library provided  by  root /TMVA package :  
MultiLayerPerceptron (MLP) 
• All data was divided into 2 samples:  training and test samples
• Top right plot shows neural network output for single module:

Ø Red - electrons with radiator
Ø Blue – electrons without radiator
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Moving forward 

• Offline analysis using ML  looks promising.
• Can it be done  in real time ?
• Here are some of the possible solutions :

Ø Computer farm.
Ø CPU + GPU
Ø CPU + FPGA
Ø FPGA only

• Steps to implement an FPGA solution:
Ø Select FPGA for application in ML
Ø Export an offline trained neural network (NN) from root to C++ file.
Ø Convert logical topology of NN coded in C++ to  RTL  structure of FPGA  in VHDL or 

Verilog.
Ø Optimize the NN  for application in FPGA.
Ø Create an I/O interface and  configure  FPGA.
Ø Perform the test with hardware.



04/29/21 Sergey Furletov 15

Artificial Neural Network
Image:  https://nurseslabs.com/nervous-system/

IRIS-HEP th Febraury 13 , 2019 Dylan Rankin [MIT] 
Image from: https://www.embeddedrelated.com/showarticle/195.php

• FPGA  Field Programmable Gate Array .
• It can perform logical operation in parallel
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Modern FPGA
• Modern FPGAs have DSP slices - specialized hardware blocks placed between gateways and routers that perform 

mathematical calculations. 
• The number of DSP slices can be up to 6000-12000 per chip.
• In addition, they often have ARM cores implemented using non-programmable gates.

Image from: https://www.embeddedrelated.com/showarticle/195.php
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Xilinx  HLS:  C++  to  Verilog

C++ Verilog

Note: fixed point calculation

Thanks to Ben Raydo for help.

The C/C++ code of the 
trained network  is used 
as input for Vivado_HLS.

The Xilinx Vivado HLS (High-Level 
Synthesis) tool provides a higher 
level of abstraction for the user by 
synthesizing functions written in 
C,C++ into IP blocks, by generating 
the appropriate ,low-level, VHDL 
and Verilog code. Then those 
blocks can be integrated into a real 
hardware system. 
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ML FPGA Core for TRD

• Using HLS significantly  decreases development time. (at the cost of lower efficiency  of use of FPGA resources)

TRD 
ML Core

DSP utilization 21%
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Test ML FPGA
C++  code  for test :
XTrdann ann;     //  create an instance  of  ML core. 

ev=0 out=0.192 out0=0.197
ev=1 out=0.192 out0=0.197
ev=2 out=0.233 out0=0.236
ev=3 out=0.192 out0=0.197
ev=4 out=0.165 out0=0.169
ev=5 out=0.192 out0=0.196
ev=6 out=0.462 out0=0.470
ev=7 out=0.187 out0=0.191

Test tools:
1. Vivado SDK
2. Petalinux
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Optimization with hls4ml package
• A  package hls4ml is developed based on High-Level Synthesis (HLS) to build machine learning models in FPGAs. 

article: J. Duarte et al 2018 JINST 13 P07027 

https://fastmachinelearning.org/hls4ml/
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GEMTRD  neural network optimization
Full size neural network, 

accuracy-optimized.

Latency = 75ns

DSP utilization 10%

Size-optimized neural network

Latency = 85ns

DSP utilization 2%
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ML for Calorimeter e/pi separation
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Calorimeter NN implementation report

Latency = 60ns

DSP utilization 1%
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Possible hardware solutions for eic @ IP6

✦ There a multiple way to implement ML-FPGA in DAQ.

✦ The main idea: to collect information from all detectors in one unit to 
process the full event.

✦ For data acquisition in physics, ATCA and OpenVPX standards have become 
widespread.
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Compute Node (PXD,Belle II) 

• The pixel detector of Belle II with its ~ 8 million channels will 
deliver data at rate of 22 Gbytes/s  for a trigger rate of 30 kHz

• A hardware platform capable of processing this amount of 
data is the ATCA based Compute Node. (Advanced 
Telecommunications Computing Architecture).

• A single ATCA crate can host up to 14 boards interconnected 
via a full mesh backplane.

• Each AMC board is equipped with 4  Xilinx Virtex-5 FX70T 
FPGA.



04/29/21 Sergey Furletov 26

ADC based DAQ for PANDA STT

6. June 2018 Seite 

26

• 160 Amplifiers;

• 5 connectors for 32-

pins samtec cables

Level 0  Open VPX Crate
ADC based DAQ for PANDA STT (one of approaches):
• 160 channels (shaping, sampling and processing) 

per payload slot, 14 payload slots+2 controllers;
• totally 2200 channels per crate;
• time sorted output data stream (arrival time, energy,...)
• noise rejection, pile up resolution, base line correction, ..

Powerful Backplane 

up to 670 GBs

L. Jokhovets, P Kulessa ..

• 40 4-channel ADCs 

(configurable up to 1 GSPS);

• Single Virtex7 FPGA

✦ All information from 
the straw tube tracker 
is processed in one unit.

✦ Allows to build a 
complete STT event.

✦ This unit can also be 
used for calorimeters 
readout and processing.



04/29/21 Sergey Furletov 27

Unified hardware solution (ATCA or OpenVPX)
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Outlook
• An FPGA-based Neural Network application would offer online event preprocessing  and allow for data reduction 

based on physics at the early stage of data processing.
• The ML-on-FPGA solution complements the purely computer-based solution and mitigates DAQ performance risks.
• FPGA provides extremely low-latency neural-network inference on the order of 100 nanoseconds. 
• Open-source hls4ml software tool with Xilinx® Vivado® High Level Synthesis (HLS)  accelerates machine learning neural 

network algorithm development.

• The ultimate goal is to build  a real-time event filter based on physics signatures.
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Backup
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Example from LHCb
R. Aaij et al 2019 JINST 14 P04013 
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LHCb ‘Tubo’ 
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Readout electronics, shaping time optimization

Current setup: preamplifiers (GAS2 ASIC chip) with 
shaping times of∼10-12ns. 
The flash ADC has a sampling rate of 125 MHz and 12 
bit resolution but provides only pipe-lined triggered 
readout ( price ~50$/channel)

Current 
setup

80ns (Sampa) shaping  time ~ 40ns shaping  time ~ 20ns shaping  time 
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Readout electronics, sampling rate optimization

a preamplifier (GAS2 ASIC chip) with shaping times of∼10-12ns. 
The flash ADC has a sampling rate of 125 MHz and 12 bit resolution but 
provides only pipe-lined triggered readout ( price ~50$/channel)

Sampling frequency: 

Current 
setup
125MHz

62.5 MHz 31.25 MHz 15.6 MHz


