

# Streaming Readout and Data Reduction at ORNL

Joe Osborn April 29, 2021

ORNL is managed by UT-Battelle, LLC for the US Department of Energy





## **Oak Ridge National Laboratory**

- Oak Ridge is one of the large, multipurpose laboratories in the DOE laboratory family
- Recently at Oak Ridge, synergies between the physics and computing divisions have started to form
- Computing specialists in software, data reduction, and streaming readout discussing with physics division on possible collaboration looking towards EIC
- In this talk, I'll discuss some of the broad ranging data reduction work going on at the laboratory

#### **Disclaimer**

- I am speaking on behalf of many colleagues at ORNL! To name a few:
  - From physics : Ken Read, Jo Schambach, Friederike Bock et al.
  - From computing : Scott Klasky, Jason Wang, Norbert Podhorszki et al.

# **Physics Division**



#### **Overview**

- Oak Ridge physics division has a strong background in electronics
- Recently published work on upgrade of ALICE Time Projection Chamber (TPC) for Large Hadron Collider (LHC) Run-3 and 4 (JINST 16 (2021) 03, P03022, arXiv: 2012.09518)
- Major contributor to ALICE inner tracking system (ITS)
- Current work on testing sPHENIX vertex detector readout and electronics

## **ALICE TPC**

- ALICE TPC upgrade intended to handle 50 kHz Pb+Pb rate at LHC Runs 3-4
- Rare probes at low momentum → desire for continuous readout
- TPC readout time window vs nominal rate → continuous readout
- Expected data rates of  $\sim$ 3 TB/s from  $\sim$ 500k channels
  - Increase of data rate by O(100) compared to previous TPC
- Immense readout challenge requiring R&D for successful physics

Joe Osborn



### **TPC Readout Scheme**



Front-end-card (FEC)

- TPC readout with ~3000 front end cards, containing 5 SAMPA chips which perform signal shaping/ADC/DSP
  - Each SAMPA produces 1.6 Gbit/s data rate, leading to the  $\sim$ 3 TB/s data rate of the detector as a whole
- 360 FPGA (CRU) cards receive the data and perform online processing
- RX link provides clock to the FEC, TX links transmit data

## **Detector Assembly**





- Detector assembled and readout has been fully integrated into the experimental cavern
- · Commissioning performed with x-rays, lasers, cosmics shows good performance
- Continued testing and commissioning in preparation for LHC Run-3 expected

## **MVTX at sPHENIX**

- ORNL also leading readout testing and development for the sPHENIX MVTX
- Setting up readout chain test stand in lab
- Streaming readout will be utilized at sPHENIX as well, with silicon+TPC (see Martin Purschke's talk on Wednesday, Takao Sakaguchi and Yasser Morales talks this morning)





Pictures courtesy of Jo Schambach



# **Computing Division**



#### **Overview**

- ORNL computing is contributing to streaming readout and improved data reduction workflows in many areas
- Expertise available with Summit and CADES computing centers on data reduction
  - Summit (and Frontier, upcoming) are ORNL's flagship super computers GPU focused
  - CADES is a compute center with cloud computing, storage, high speed data transfer nodes, and CPU/GPU nodes available for analysis
    - CADES used as tier 3 data analysis cluster for ALICE
- Additionally, dedicated contributions to improving data workflows at projects like ITER and the Square Kilometer Array (SKA), see :
  - Fusion Science and Technology, vol. 77, no. 2, pp. 98-108, 2021
  - SC '20: Proceedings of the International Conference for High Performance Computing, Networking, Storage, and Analysis, no. 2, pp. 1–12 (2020)

# **ITER and Fusion Experiments**

- ITER is an international fusion project aiming to research fusion's applicability as a clean energy source
- Projected to produce approximately  $\sim$ 1 PB per day
- Necessitates using large scale data movement and federated computing for data processing
- Additionally, near real time analysis to guide experimental operation strongly desired



# **Example Workflow at Fusion Reactors**



AK RIDGE

Joe Osborn

- 1. Compare performance locally to pre-run simulation
- 2. If performance does not match expectations from simulation, stream data to remote HPC
- 3. Use trained ML models to detect anomalies
- Use ML information to run higher accuracy, more expensive simulations to understand discrepancy
- Send diagnostic information back to scientists to guide next pre-run, simpler, simulation for performance diagnostics

## **Testing Workflow at KSTAR and PPPL**



- ITER does not have data yet, so an example test is performed at KSTAR and Princeton Plasma Physics Laboratory (PPPL)
- Goal to demonstrate streaming data and compare to previously completed simulations



# **Testing Workflow at KSTAR and PPPL**



- ITER does not have data yet, so an example test is performed at KSTAR and Princeton Plasma Physics Laboratory (PPPL)
- · Goal to demonstrate streaming data and compare to previously completed simulations
- Previous throughput suffered from disruptions due to packet loss

# **Testing Workflow at KSTAR and PPPL**



- ITER does not have data yet, so an example test is performed at KSTAR and Princeton Plasma Physics Laboratory (PPPL)
- · Goal to demonstrate streaming data and compare to previously completed simulations
- New software achieves high, sustained data transfer throughput of  $\sim$ 1.2 Gbps MK RIDGE Joe Osborn

## **Square Kilometre Array**

- Square Kilometre Array (SKA) is a radio-astronomy experiment being built in Western Australia and South Africa
- Expected that the arrays will produce 5.2 Tb/s and 4.7 Tb/s data rates
- Will result in extremely large data sets that need to be calibrated, reduced, etc.



## **SKA Data Challenges**

Joe Osborn

- SKA data rate will be 1-4 orders of magnitude larger than current telescopes, while SKA2 will be 1-2 orders of magnitude larger than SKA1
- Millions of files for a typical observation requires robust filesystem, metadata management, archiving, etc.
- SKA data must be simulated since the experiment is still being designed and built, so simulations were performed to mock the data rates

| Telescope    | Stations | Baseline<br>(km) | Channels | Input<br>rate<br>(Gbps) | Deployed<br>PFLOPS |
|--------------|----------|------------------|----------|-------------------------|--------------------|
| MWA2         | 128      | 5                | 3,072    | 8                       | $\ll 0.1$          |
| VLA          | 27       | 35               | 16,384   | 0.5                     | $\ll 0.1$          |
| LOFAR        | 51       | 1,300            | 62,464   | 200                     | < 0.1              |
| ASKAP        | 32       | 6                | 16,384   | 23                      | 0.2                |
| SKA1-<br>Low | 512      | 65               | 65,536   | 4,700                   | 125                |

## **Summit for SKA Processing**



- Summit at ORNL was used to simulate data generation and processing at similar scales of SKA
- Table writing performance for several configurations shown, reaching peak of ~0.9 TB/s
- Peak writing rate is configuration dependent - work ongoing

#### Conclusions

- ORNL is involved in several experiments world wide that are facing or will face data read out and reduction challenges
  - ALICE TPC at the Large Hadron Collider
  - sPHENIX MVTX at the Relativistic Heavy Ion Collider
  - ITER fusion experiment
  - SKA radio-astronomy experiment
- ALICE TPC commissioning at the LHC ongoing detector already installed
- sPHENIX MVTX readout testing and development ongoing
- Test workflow with KSTAR and PPPL achieved high, sustained throughput
- SKA workflow demonstrated on Summit supercomputer at ORNL