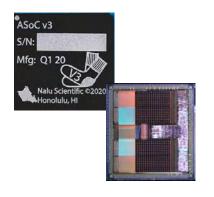


Frontend microelectronics for fast signal acquisition and feature extraction for particle detection and tracking

April 29, 2021 Isar Mostafanezhad, Ph.D. Founder and CEO at Nalu Scientific LLC

Work partially funded by US DOE SBIR Grants:

DE-SC0015231, DE-SC0017833, DE-SC0020457


NALU SCIENTIFIC - Approved for public release. Copyright © 2021 Nalu Scientific LLC. All rights reserved. Streaming DAQ workshop, Apr 2021.

Nov 2020 SRO workshop slides:

https://indico.bnl.gov/event/9458/contributions/43285/attachments/31401/49568/Nalu - Streaming DAQ workshop Slides - Nov 2020 - for Website lowres.pdf


WAVEFORM DIGITIZER SoCs FOR PRECISE TIME OF FLIGHT ESTIMATION

1. Front-end Chips:

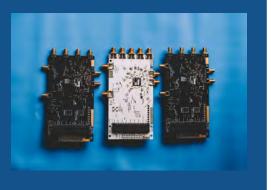
- Event based digitizer+DSP
- 4-32 channel scope on chip
- 1-15 Gsa/s, 12 bit res.
- Low SWaP-C
- User friendly: FW/SW tools

2. Integration:

- SiPM
- PMT
- LAPPD
- Detector arrays

3a. Main application:

- NP/HEP experiments
- Astro particle physics


3b. Other applications:

- Beam Diagnostics
- Plasma/fusion diagnostics
- Lidar
- PET imaging

NALU SCIENTIFIC - Approved for public release. Copyright © 2021 Nalu Scientific LLC. All rights reserved. Streaming DAQ workshop, Apr 2021. LAPPD photo courtesy of Incom.

ABOUT NALU SCIENTIFIC

Fast Growing Startup in Honolulu, Hawai'i

Located at the Manoa Innovation Center Over \$11M in committed funding, 18 staff members Access to advanced design tools Rapid prototyping and testing lab

Scientific Expertise

HEP/NP particle detection and tracking Radiation detection Readout electronics for Nuclear & Particle Physics detectors

Technical Expertise

Analog + digital System-on-Chip (SoC)
Field Programmable Gate Arrays (FPGA)
Complex multi-layer Printed Circuit Boards (PCBs)

Nalu = 'wave' in native Hawaiian language

NALU SCIENTIFIC - Approved for public release. Copyright © 2021 Nalu Scientific LLC. All rights reserved. Streaming DAQ workshop, April 2021.

Funding, Collaboration and Workforce Development

\$11 M Secured by Nalu

✓ 9x SBIR Phase I

FY16-21

- ✓ 6x SBIR Phase II
- ✓ Various matching grants
- Misc. contracts

Why Hawaii?

- Strategic location Asia <> US
- University of Hawaii
- Greater impact on State
- "Hawaii Brand"
- Retain local expertise

\$1M Sponsored Research

FY16-20

- ✓ University of Hawaii
- National Labs
- 4x post docs
- ✓ 4x graduate students
- Misc. materials and supplies

New possibilities:

✓ New tech-dev based on capabilities

FY21-23

- ✓ Sensor integration
- Custom design
- New partnerships

2x MS and 2x PhDs had their first jobs at Nalu Scientific.

NALU SCIENTIFIC - Approved for public release. Copyright © 2021 Nalu Scientific LLC. All rights reserved. Streaming DAQ workshop, April 2021.

Current SoC-ASIC Projects

Project	Sampling Frequency (GHz)	Input BW (GHz)	Buffer Length (Samples)	Number of Channels	Timing Resolution (ps)	Available Date
ASoC	3-5	0.8	16k	4	35	Rev 3 avail
HDSoC	1-3	0.6	2k	64	80-120	May'21
AARDVARC	8-14	2.5	32k	4	4	Rev 3 avail
AODS	1-2	1	8k	1-4 100-200		Rev 1 avail
STRAWZ	5	2	2k	64	10	Dec'22

- HDSoC: SiPM specialized readout chip with bias and control
- AARDVARC: Variable rate readout chip for fast timing and low deadtime
- AODS: Low density digitizer with High Dynamic Range (HDR) option
- STRAWZ: Streaming Autonomous Waveform-digitizer with Zero-suppression

Work funded by DOE SBIRs. University of Hawaii as subcontractor.

AARDVARC v1 S/N: MFG: Q2 18 MFG: Q2 18 Naiu Scientific 02018

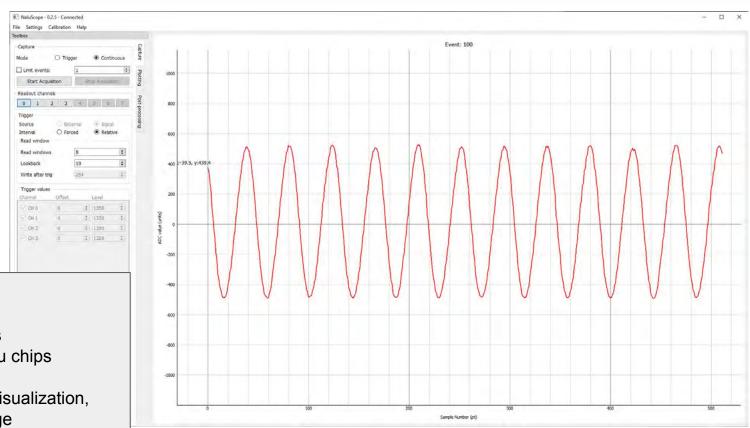
NALU SCIENTIFIC - Approved for public release. Copyright © 2021 Nalu Scientific LLC. All rights reserved. Streaming DAQ workshop, Apr 2021.

ASoC V3 DESIGN DETAILS

Compact, high performance waveform digitizer

- High performance digitizer: 3+ Gsa/s
- Highly integrated
- Commercially available, low cost, patented design
- 5mm x 5mm die size

Parameter	Spec
Sample rate	2.4-3.6GSa/s
Number of Channels	4
Sampling Depth	16kSa/channel
Signal Range	0-2.5V
Number of ADC bits	12 bits
Supply Voltage	2.5V
RMS noise	~1.5 mV
Digital Clock frequency	25MHz
Timing resolution	<25ps (see below for details)
Power	120mW/channel
Analog Bandwidth	850MHz
Serial interface	Up to 500 Mb/s***

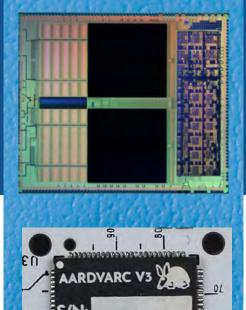

- Calibration memory access
- PLL on chip
- Isolated analog/digital voltage rings
- Serial interface
- Self triggering
- Completed DOE Phase II SBIR
 - Eval cards avail
 - o Custom boards under dev

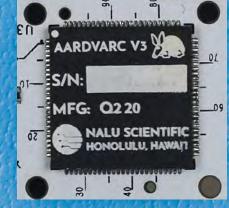
IEEE NSS 2021

NaluScope Common Software and GUI

- Windows/Linux PC
- USB interface
- GUI, CLI interfaces
- Common to all Nalu chips
- DAQ configuration
- Data exploration, visualization, curation and storage

AARDVARC V3 DESIGN DETAILS

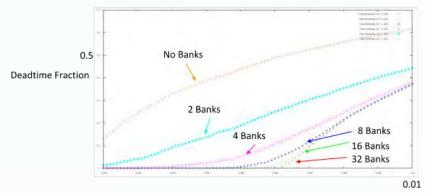

Compact, high performance waveform digitizer


- High performance digitizer: 10+ Gsa/s
- Highly integrated
- Commercially available, low cost, patented design
- 5mm x 5mm die size

Parameter	Spec
Sampling Rate	10-14 GSa/s
ABW	> 1GHz
Depth	32k Sa
Trigger Buffer	~3 us*
Deadtime	0**
Channels	4
Supply/Range	1.2V/0.3-0.9V
ADC bits	12
Timing accuracy	<5ps (@13 GSa/s)
Technology	130 nm CMOS
Power	80mW/ch

- On chip calibration
- On chip PLL
- On chip feature extraction
- Isolated analog/digital voltage rings
- Serial interface
- Funded DOE Phase IIA SBIR

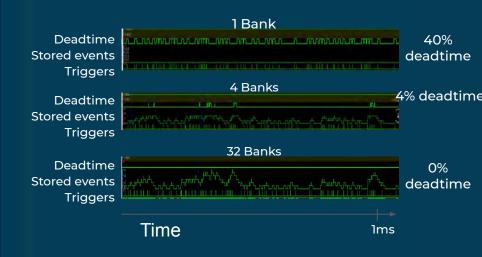
IEEE NSS 2021



AARDVARC v3

Simulation of deadtime-less operation

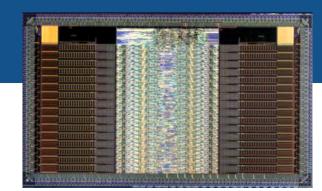
Banking system:


- Storage array flexibly partitioned
- Handles multiple hits
- Reduce deadtime

Trigger Probability (per window)

Simulation showing 0 deadtime growing asymptotically with the number of banks for average Poisson rates below maximum rate. Trigger probability = raw hit per channel.

 Logic level simulations with real estimates for digitization/readout (full 4 channels readout, Rate of 125kHz)

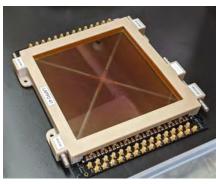

HDSoC VI DESIGN DETAILS

High density waveform digitizer with dead-timeless readout

- High Density: 64 channels
- Highly integrated, SiPM gain + bias
- Commercially available, low cost CMOS

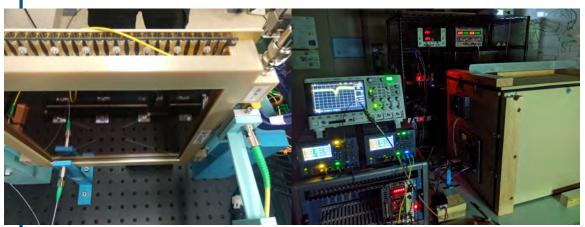
Parameter	Spec			
Sampling Rate	1-2 GSa/s			
ABW	> 600MHz			
Depth	2k Sa			
Trigger Buffer	~3 us*			
Deadtime	O**			
Channels	64			
Supply/Range	2.5			
ADC bits	12			
Timing accuracy	80-120ps			
Technology	250 nm CMOS			
Power	TBD			

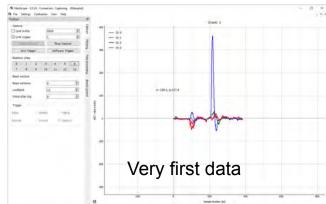
- On chip calibration
- Serial interface
- On chip feature extraction
- Virtually dead-timeless
- 32 ch proto chip fabricated
- Phase II SBIR awaiting award
- Next steps: packaging and eval


HDSoC v1 die shot

** Simulated Up to 240 KHz / ch with single serial link using on-chip self trigger and feature extraction. Up to 400 kHz / ch with additional serial links.

Integration efforts - HIPeR





AARDVARC based readout

Incom's Gen 1 LAPPD

Integration and testing (UH)

Nalu Scientific Phase I SBIR in collaboration with Incom and University of Hawaii.

Dead-timeless operation

Multi-bank switched capacitor array:

- Older versions of chips (ASoC, AARDVARC)
- Long internal analog memory (storage)
- Capable of self triggering
- Suitable for long trigger delays (3-5 us)
- Large die size
- ASoC V3 may be able to readout up to ~100 kHz of input rate without deadtime (estimated).

Virtual analog memory:

- New lines of chips (HDSoC, STRAWZ)
- Unlimited virtual depth (up to a certain rate)
- o Small die size, lower power
- Dead-timeless up to a certain rate, designed with self-triggering in mind
- Suitable for streaming mode readout
- Feature extraction and on-chip data reduction
- Estimated 240-400 kHz rate handling

How can Nalu contribute?

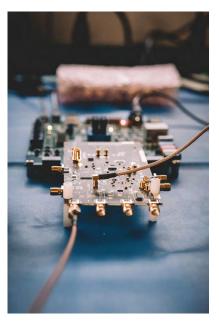
Project	Frequency (GHz)	Buffer Length	Channels	Timing Res. (ps)	Rate handling	TRL	Suitable for	Potential EIC Sub Detectors
ASoC	3-5	16k	4	35	~100kHz	High	Low density, precision timing, flexible board integration	
HDSoC	1-3	2k	64	80-120	~240, 400 kHz	rev1	High density SiPM, MA-PMT	mRICH, dRICH
AARDVARC	8-14	32k	4	4	~125kHz	Med	Precision timing, low density	
STRAWZ	5	2k	64	10	~500 kHz	Low	High density, precision timing	ToF PID
AODS	1-2	8k	1-4	100-200		Med	High dynamic range	cal?

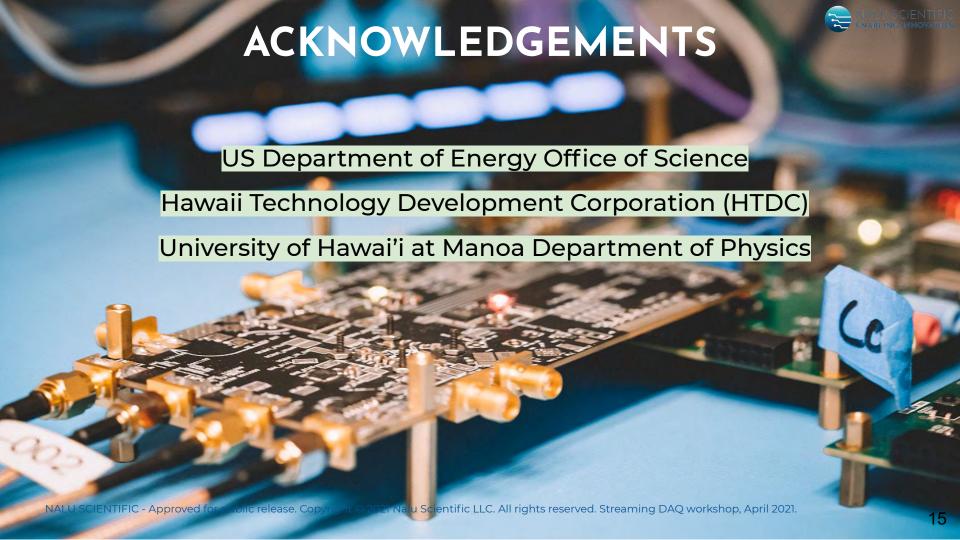
- ASIC Tech shovel ready and likely to around for next 10 years (F. Barbosa talk earlier)
- Knowledgebase created through significant investment from DOE SBIR program.
- **Experiment in mind** through high levels of integration: clock, calibration, memory
- Commercial grade design tools used to create commercial chips
- **Teaming** with scientists on EIC-PID readout, white papers, etc
- Strategic partnerships with system integrators to connect chips to DAQs
- Working relationships with U. of Hawaii and several National Labs

Summary

- Nalu Scientific portfolio of FE/digitizer electronics
 - Specialized for NP/HEP experiment readout
 - High integration (clock, memory, calibration)
 - Packaged chips and eval cards available
 - Additional testing under way including irradiation

Expertise:


- NP/HEP electronics/FW development
- Advanced mixed signal ASIC design
- A variety of detector electronics design


Funding:

- SBIRs: covers costly chip development
- Trade studies: initial assessment
- o <u>Custom design contracts:</u> Implementing new packaging and PCB designs

Next steps:

- Continue chip+PCB development
- Continue engagement with experiments in order to tailor the designs to evolving experiment needs
- New integration efforts under way.
- Eval boards available for testing

Backup