

Streaming readout of sPHENIX MVTX and R&D for EIC

Y. Corrales Morales Los Alamos National Laboratory

The sPHENIX Detector

- \succ Super Phenix (sPHENIX) is a hermetic detector designed to study heavy flavor and jet physics in Heavy Ion Collisions at **RHIC**:
 - First run year 2023
 - High data rate (AuAu): 15 kHz for all detectors
 - N (AuAu) ~ 1.43 x 10¹⁰ (projection in 3 years of running)
 - 1.4 T magnetic field (reuse of old BarBar solenoid)
 - $|\eta| < 1.1$
 - High resolution vertexing with MVTX

Yasser Corrales Morales

SPHENIX - MVTX

MVTX:

- 3 active layers (48 staves)
- 9 ALPIDE chips per stave \succ
- Stave length: 290 mm
- Distance from IP: 2.5 ->
- Full azimuthal coverage ALICE
- |η| < 1.1 \succ

IC)

Staves are identical to ALICE ITS inner barrel staves, except for power leads Produced at CERN and shipped to LBNL for test and assembly

Yasser Corrales Morales

ALPIDE Sensor Technology

Pixel Sensor CMOS 180 nm Imaging Process (Tower Jazz)

3 nm thin gate oxide, 6 metal layers

Not to scale

Key Features:

- 29 µm x 27 µm pitch, chip size 30 mm x 15 mm, 50 µm thickness
- High-resistivity (> 1 kOhm/cm) p-type epitaxial layer (18 μ m to 30 μ m) on p-type substrate
- Small n-well diode (2 μ m diameter), ~100 times smaller than pixel => low capacitance => large S/N
- Continuously active, ultra-low power front-end (40 nW/pixel)
- Ultra-low power matrix readout (< 200 mW whole chip)
- High speed output serial link: 1.2 Gbit/s

Yasser Corrales Morales

Workshop VIII on Streaming Readout

Reverse bias can be applied to the substrate to increase the depletion volume around the N-well collection diode

ALPIDE Principle of Operation

Front-end acts as delay line:

- Sensor and front-end continuously active.
- \succ Upon particle hit front-end forms a pulse with ~1-2µs peaking time ("analogue delay")
- \succ Threshold is applied to form binary pulse
- Hit is latched into memory if strobe is applied during binary pulse

ultra low-power front-end circuit 40 nW/pixel

Matrix Readout

Pixel Matrix - Hit driven architecture

- Priority encoder sequentially provides addresses of all hit pixels present in double column.
- No activity if not hit (no free running clock)

low power

MVTX Readout Integration

FELIX and Readout Unit are integrated: FELIX forwards trigger information and aggregates RU data.

- One Readout Unit (RU) per stave, 48 total \succ
 - 9 x 1.2 Gbit/s firefly links, 1 clock, 1 control
 - 3 GBT optical links to FELIX per RU

Yasser Corrales Morales

- 8 RU per FELIX, 6 FELIX in total
- One Power Board (PB) supports 2 staves

Readout Unit from ALICE

Yasser Corrales Morales

Workshop VIII on Streaming Readout

Controls the sensors, supplies them with clock and triggers.

SPHENIX - MVTX "BackEnd": ATLAS FELIX

MTP 24 or 48 Coupler

Architecture Highlights:

- Xilinx Kintex Ultrascale KU115 FPGA
- 48 bi-directional GBT links >
- 16 Iane Gen 3 PCIe
 - PCIe Tx > 100 Gb/s
- Mezzanine site for sPHENIX timing system card >

12 V Power (8-pin PCle power connector)

sPHENIX Timing Mezzanine

FELIX v2 (BNL 712)

sPHENIX DAQ Architecture

MVTX Hardware: 48 Staves 48 FEE (Readout Units v 6 FELIX v2.0 6 EBDC servers

Yasser Corrales Morales

Workshop VIII on Streaming Readout

	Event Builder				
			Buffer Box		
			Buffer Box		
			Buffer Box		
	Network Switch	ATP ATP ATD	Buffer Box	lo the	
			Buffer Box	RACF/HPSS	
			Buffer Box		
		ATP	Buffer Box		
		Acronyms:			
′2.0)		FEE	Front End Electronics		
		FELIX	Front End LInk eXchange		
		EBDC	Event Buffer and Data Compressor		
		ATP	Assembly and Trigger Processors		
		Buffer Box	Interim storage		
		FEM	Front End Module		
		DCM2	Data Collection Module		
		SEB	Sub-Event Buffer		

MVTX will be integrated into the sPHENIX DAQ: working prototype of rcdaq plugin for FELIX and online data decoding/monitoring of ALPIDE data.

MVTX Trigger Timing System (mGTM)

- sPHENIX Global Timing Module (GTM) delivers a true 6x RHIC (9.4 MHz) clock to carry the timing information.
- >**GBTx ASICs**.
- We need one unique clock going to all six FELIX, which sends a derivative to the RU and eventually to the ALPIDE.
 - Only way to keep MVTX synchronized

Proposal is to send data to MVTX at a higher frequency, adding comma's into extra clock cycles to keep the two data rates close in time

Due to RU architecture (with the currently produced RU) MVTX system needs a 40.079 MHz clock for the operation of the

Workshop VIII on Streaming Readout

Triggered and Continuous mode operations

The MVTX can operate in two modes:

Triggered mode: Pixels are latched with a short strobe window, followed by read out, based on an external trigger. e.g. Physics trigger (with latency ~ 6 μ s) in the trigger word from sPHENIX GTM data.

Continuous mode: Pixels are latched using long, periodic strobe windows with short inter-strobe periods (~100 ns) to initiate readout.

e.g. every orbit with the length of an orbit (120 x 106 ns = \sim 12 µs)

Yasser Corrales Morales

Workshop VIII on Streaming Readout

Trigger Latency Study

Study ALPIDE performance with Pulsed Laser @ LANL \succ Inject "MIP" signal:

ALPIDE Default Settings Integration time $\sim 5 \ \mu s$

Strobe Delay

Yasser Corrales Morales

Workshop VIII on Streaming Readout

- 850 nm laser, 4 ns wide pulse, ~1 MIP
- SokHz trigger

Find optimal MAPS operating parameters

Strobe Delay

Streaming Readout and Per-strobe ALPIDE multiplicity

Continuous Readout is preferred:

- In order to decouple the analogue shaping time tuning from the sPHENIC global trigger latency choice.
 - e.g. Preserving the important tune of the threshold setting.
- In addition, running all inner tracking system (MVTX, INTT and TPC) in continuous readout mode will record 500x higher statistics of M.B. p+p collisions
 - Which will improve the HF measurements in the central kinematic region.

- Several factors contribute to the per-strobe multiplicity for a given ALPIDE pixel in a MC simulation: Per-collision multiplicity (PDF used in the simulation)
 - Number of pile-up collisions -> Poisson distributed
 - Number of Noise hits (10⁻⁶) -> Poisson distributed
 - Duplicated hits, due to the integration time of the front-end, are included in the next integration window

Continuous-mode is plausible at 5-us strobe window too \sim Probability [readout-time per strobe > 5 µs] < 10⁻⁵

13 MHz p+p collisions, 10- μ s strobe width + 5- μ s integration, 10-4 noise per strobe

Au+Au multiplicity, per-strobe, chip-4

- noise and higher fluctuation in pileup
- Percent-level chance that 3rd buffer is needed to avoid the loss.

Caveat:

- All discussion is driven by the tails of the distribution which need to be well understood.
- Plus a detailed simulation of the data flow and the instantaneous rates. >

Yasser Corrales Morales

Workshop VIII on Streaming Readout

Reducing integration windows to 5 μ s is trickier for Au+Au collisions, due to high fraction of

200 kHz Au+Au collisions, 5µs strobe width + 5-µs integration, 10-4 noise per strobe CCDF 5-us readout 10-10⁻² 10-3 10-4 10⁻⁵ 10⁻⁶ 10-7 400 600 800 100012001400160018002000 200 0 Chip multiplicity [Pixel]

What's next: LANL Forward Silicon Detector proposal for the EIC

The future Electron-Ion Collider (EIC) will utilize high luminosity high energy electron+proton and electron+nucleus collisions to solve several fundamental questions.

> \succ Through measuring heavy flavor hadrons, jets which can be treated as surrogates of initial quarks/gluons and their correlations in the hadron/nuclei going (forward) direction in e+p/A collisions at the EIC.

Workshop VIII on Streaming Readout

Yasser Corrales Morales

To understand the nuclear medium effects on hadron production such as 1) modification on initial nuclear PDFs and 2) final state hadronization processes through the comparison of measured heavy flavor hadron/jet cross section between e+p and e+A collisions.

Requirements for a silicon vertex/tracking detector at EIC

- fine spatial resolution is needed
- forward region.

Fast timing (1-10ns readout) capability allows the separation of different collisions and suppress the beam backgrounds.

Yasser Corrales Morales

Workshop VIII on Streaming Readout

To meet the heavy flavor physics requierements, a silicon vertex/tracking detector with low material budgets and

Particles produced in the asymmetric electron+proton and electron+nucleus collisions have a higher production rate in the forward pseudorapidity. The EIC detector is required to have large granularity especially in the

Conceptual design of the proposed FST detector

\succ In GEANT4 simulation with the Fun4All (sPHENIX and EIC simulations) framework:

- High Voltage (HV)-MAPS silicon detector.
- R&D for all possible silicon sensor options in progress:
 - LGAD, AC-LGAD, MALTA are under R&D at LANL -> exploring the readout options
 - First studies focussed on the tracking spatial resolution performance
 - available.

LANL FST integrated inside the EIC

Different detector designs documented in arXiv:2009.02888

"These studies are supported by LANL LDRD 20200022DR project"

Yasser Corrales Morales

• The proposed Forward Silicon Tracking Detector (FST) consists of 3 planes of MAPS silicon detector and 2 forward planes of

More realistic/complete description will be implemented in the simulation once the results from R&D characterizations are

Silicon sensor options

	Pixel pitch	Silicon thickness	Integration time
)	100µm	<300μm (<1% X _α)	300-500ns
	36.4µm	100μm (<0.5% X ₀)	5ns
	20µm	50µm	100ns ?

LANL FST help determine the track Distance of **Closest Approach(DCA)** with good precision!

MVTX plans to operate in Continuous readout mode from Day-1:

- MC simulations have shown that continuous readout mode for MVTX detector is plausible.
- Continuous readout avoids dead-time and biases due to standard triggering techniques
- Silicon MAPS is recognized as a leading technology for EIC detector applications. LANL FST proposal will have a great impact to the Heavy Flavor physics at EIC detector.

Thank you for your attention

Yasser Corrales Morales

