
CLAS12: from triggered to free running DAQ

Sergey Boyarinov Workshop VIII on Streaming Readout April 28, 2021

- 1. Front End Electronics Upgrade
- 2. Trigger System Evolution
- 3. Streaming Readout

CLAS12 front-end upgrade for 100kHz – and for streaming

VETROC TDC board

8 Generic diff. In 8 ECL out Can be: Trigger, reset, calib., Ref. **VME 64** 32 differential in 32 LVTTL in (with mezz. for diff. IN) VXS PO: **Trigger Interface** Trg/Clk/Reset/Busy Trg/Clk/Reset/Busy 4x Rx/Tx (to SW#A) 4x fiber QSFP VME backplane IO card 28 LVTTL on row A 4 + 4 LVTTL on row D 32 differential in 28 LVTTL on row C 2 Rx/Tx on row A & C 16 LVTTL on row Z 32 LVTTL in (with mezz. for diff. IN)

18Mbit RAM

Channel counts:

- 64 channels on VETROC base; plus
- 64 channels on Mezz. Cards; plus
- 64 channels via VME P2/backplane IO card. --Any-level differential (converted to LVTTL on board)

Power supply:

• VME: +5V, +12V -12V

Data Readout:

- VME 64
- VXS P0
- QSFP front panel

Slow Controls(FPGA loading, setting etc.):

- VME for slow control
- Fast Controls inputs (trigger etc.):
- VXS P0 (VXS payload slot);
- QSFP front panel (like a TI);
- Generic input (8-pair) front panel connector.

Measurement precision:

~ 35 ps, limited by the 'LVTTL' conversion

Status:

- Triggered readout: ready (both the FPGA firmware and the VME software)
- Streaming readout: FPGA firmware is available, but needs be tested

FPGA, XC7A200T-2FF1156C

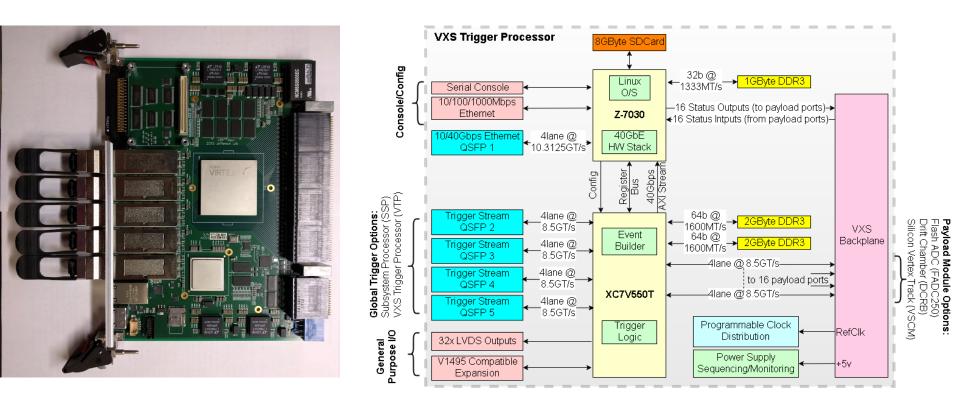
Budget: 40 VETROCs x \$2k = \$80k (8 received)

Crates VME64X->VXS backplane upgrades – 8 x \$6.5k = \$52k (6 installed) 1 new VXS crate (CTOF-HTCC separation) with CPU, SD, TI = \$20k Connectors, cables - \$10k

Total: \$162k

MM readout based on VMM3 ASIC

Figure 11: Photograph of the 512-channel Front-End Unit.


Notes:

- 1) Trigger support would allow future expansion to support integration into trigger system. Requires a significant number of additional FPGA I/O, hence the increased FPGA costs for that configuration.
- 2) VMM3 noise & dynamic range still need to be confirmed suitable for use in CLAS12 MM use case
- 3) Backend may need a V

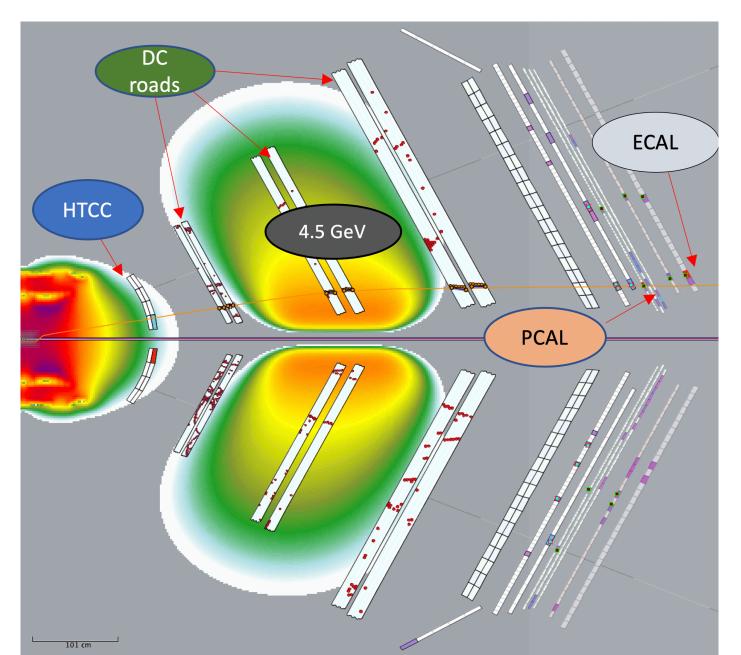
FEU Replacement (DREAM -> VMM3A) Cost Estimate

- 512 channels per board (8x DREAM -> 8x VMM3A)
- 12 FEU (FMT) + 36 (BMT) => 48 FEU boards needed (need to double check this is exactly right)
- 48 * 8 = 384 VMM3 ASICs
- Plan to use same detector connector and readout fiber (so this upgrade will only replace these boards). VTP will be required to bypass VME readout to achieve high performance: 10GbE readout with VTP would support full MM readout @ 100kHz with ~15% occupancy (assuming 32bit per hit)
- Components
 - FPGA (if 6bit trigger path implemented): \$1,000
 - FPGA (if only readout path implemented): \$350
 - Connectors: \$50
 - Fiber transceiver: \$80
 - PCB: \$300
 - Assembly: \$500
 - ASIC (???): \$800 (this assumes \$100 per chip, online I've read \$25 – probably depends on if we can piggy-back an order)
 - Misc (power, memory, etc): \$200
- Unit cost (w trigger*, w/o trigger): \$2930, \$2280
- Total (w trigger*, w/o trigger): \$150k, \$110k

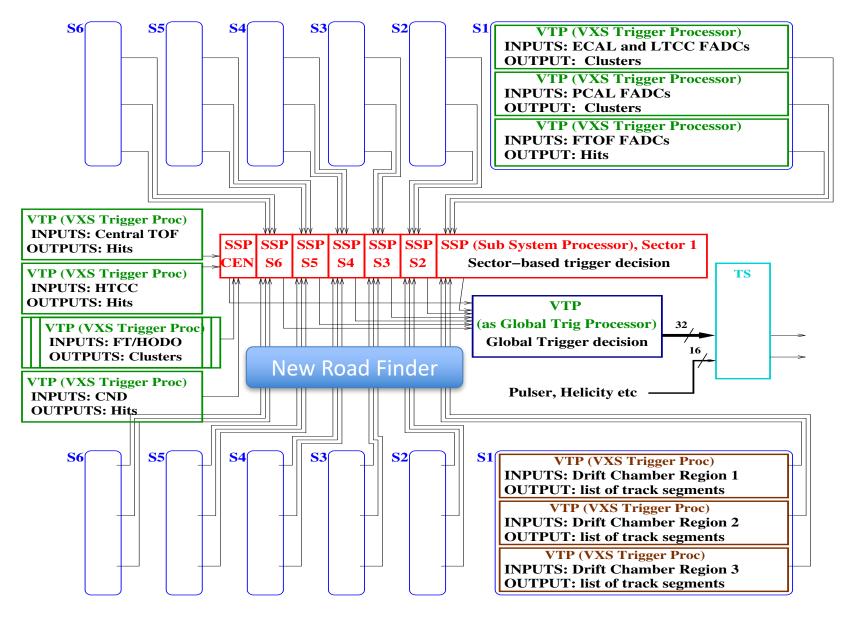
Upgrading VTP board for streaming readout

- In existing trigger-based mode, VTP sends trigger information from QSFP2 to the following trigger system stage, and will be able to act as readout board in the same time if needed (2.5->3.125 for serial on back plane, 10Gbit out from 16 slots); more VTPs may be needed if used for readout (MM)
- In streaming mode, there is no trigger information, VTP sends stream of data from QSFP1 to Linux server with expected bandwidth up to 4 x 10Gbit/s link
- FPGA based TCP/IP protocol is used between VTP and Linux server
- Needs about 100K to read all VXS crates through VTPs instead of VME bus

DAQ upgrade up to 100kHz event rate


- Trigger-based mode is used
- FADC250, DCRB, VSCM, SSP boards will stay
- CAEN TDCs have to be replaced with VETROCs, VME crates to be converted to VXS
- MM readout to be decided, proposed solution is new VMM3 ASIC based board, work in progress with MM team
- SVT ASIC performance have to be validated for high luminosity running
- Some VTPs have to be used as both trigger and readout modules, firmware under development (reason is limited VME readout bandwidth)
- Some boards firmware and CODA software have to be validated and may need to be modified/fixed
- CODA software (EB in particular, also ET and ER) have to be able to process higher rate, may need improvements
- Work can be performed in steps, with partial performance improvement on every step
- Time scale 2 years

DAQ upgrade to streaming


- VTP, FADC250, DCRB, VSCM, SSP, VETROC boards can be reused, or/and new non-vxs based electronics can be used
- Exact streaming DAQ configuration for CLAS12 to be decided during following years based on available technology
- All new electronics development (ASICs etc) have to be compatible with streaming mode
- New streaming version of CODA is needed not available at current time, switching to streaming DAQ can be considered only when back-end is available or close to become available
- Time scale 3-5 years depending on demand

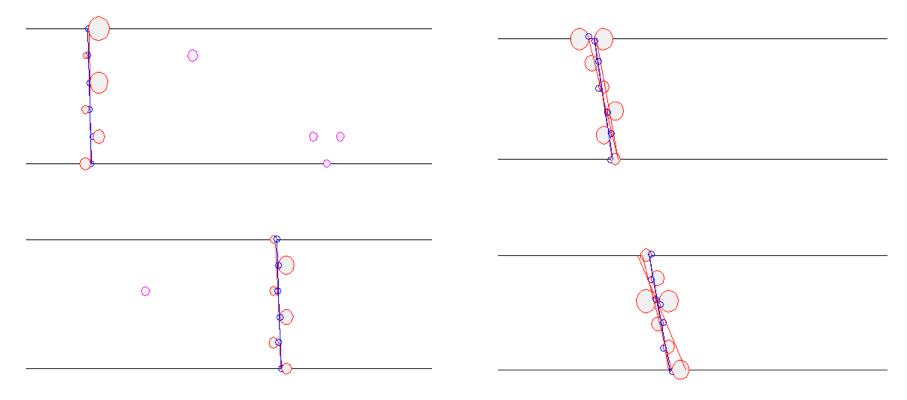
Front-end electronics upgrade to streaming mode is underway, no serious problems anticipated

CLAS12 Electron Trigger Event Example

CLAS12 Trigger System (level1)

CLAS12 Trigger System Status

- Fully operational, efficiency close to 100%
- Portion of 'good' events depends on trigger type (electron, photon, meson), about 50% in average
- The achieved performance of the CLAS12 Trigger System allows use without significant changes for the entire CLAS12 physics program

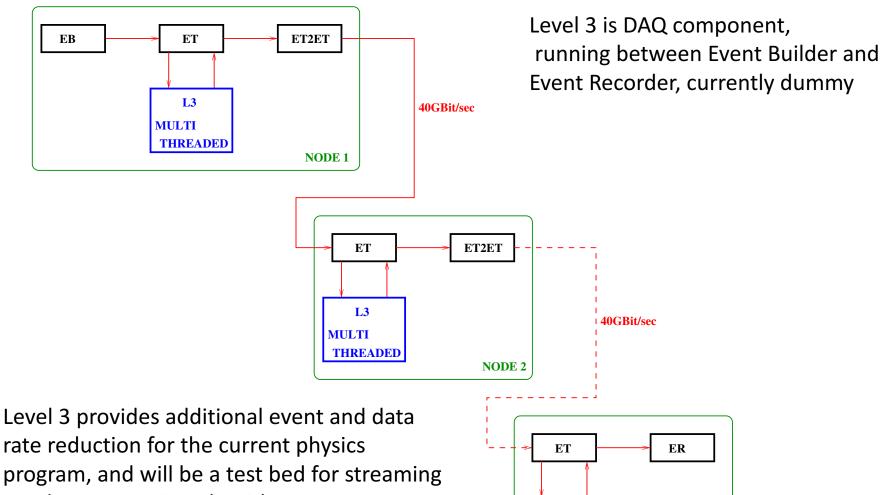

CLAS12 Trigger possible improvements

- ECAL/PCAL trigger can to be improved in following ways: (1) in addition to electron shower clustering, search for MIP-like clusters have to be added to improve muon class triggers; (2) use individual strip real attenuation length instead of average one; (3) allow individual strip timing delays and improve cluster timing reporting
- DC trigger can be improved (needed in particular for Q**2 cuts) in following ways: (1) segments selectivity and space resolution improvement; (2) roads space resolution improvement; (3) drift time usage to improve two previous items feather
- Additional geometry matching between detectors, for example DC vs PCAL clusters,
- Allow multi-particle trigger in one sector
- Improve timing coincidence by narrowing signals from different trigger components

CLAS12 Trigger Upgrade and path to the streaming daq data processing

- Current trigger system is solely based on FPGA, there is no Level3 component
- We decided do not touch existing Level1 trigger, and implement all additional elements in new level3 (software) trigger
- Dummy Level3 component was added, and all trigger improvements will be developed as Level3 elements; it will allow not only improve current trigger, but also develop solutions for future streaming DAQ data processing
- Initial tasks for level3 will be drift chamber segment finder, and AI-based track finder

CLAS12 Trigger, Drift Chamber Segment Finder (works on 112x6 wire superlayers)



Existing fpga-based segment finder: hit-based, does not need timing calibration, compares data with segment dictionary

Proposed segment finder: time-based, requires reasonable timing calibration,

fits data by straight line – suppose to improve segment position and angle resolution Three basic operations: shift-and-sums, peak search in 2-dim array, and linear fit; will explore fpga-, gpu- and cpu-based solutions

CLAS12 Level3 (software) trigger

L3 MULTI THREADED

era data processing algorithms

First server with 2 GPU cards is coming

NODE N

Streaming Readout

- In few years, CLAS12 front-end electronics should be ready for the streaming DAQ operation; back-end suppose to be developed by other groups
- CLAS12 is able to provide test beds for the streaming DAQ development, from relatively small setups (few VXS crates) up to 40-crate system where full scale streaming DAQ can be tested, with the data rate on the level of 50GByte/sec

Conclusion

- CLAS12 front-end upgrade plan is in progress, with the purpose to increase event rate up to 100kHz with existing triggered mode, and to make system compatible with streaming mode operation
- Data processing solutions for the future streaming operation will be developed and tested in frame of the new level3 trigger project for the current (triggered) operation
- We are working closely with jlab and outside groups assisting them with streaming DAQ back-end development

Supporting slides

Time-based segment finder: 2-dim peaks after shift-and-sum process

sgPrintSumArray2048: min=992 max=1120

89	sgrintsumHrray2V46; min=392 max=112V sum [0][992] > 00000000000000000000000000000000000																		
su	n [0]	[992]] >	0000000000	000000	000000000000000000000000000000000000000	0000000000	00000000	00000000	000000000	00000000	00000000000	0000000000	000000000000000000000000000000000000000	00 00	0000000000000	00000000000	000000000
su	n [1]	[992]] >	0000000000	000000	000000000000000000000000000000000000000	0000000000	00000000	00000000	000000000	00000000	000000000000000000000000000000000000000	0000000000	000000000000000000000000000000000000000	00 00	00000000000000	0000000000	000000000
su	n [2]	[992]] >	000000000	000000	000000000000000000000000000000000000000	0000000000	00000000	00000000	000000000	00000000	0000000000	0000000000	000000000000000000000000000000000000000	00 00	0000000000000	0000000000	000000000
su	n [3]	[992]	>	0000000000	000000	000000000000000000000000000000000000000	0000000000	00000000	00000000	000000000	00000000	0000000000	0000000000	000000000000000000000000000000000000000	00 00	00000000000000	0000000000	000000000
su	ηĒ	4]	[992]	1 >	0000000000	000000	000000000000000000000000000000000000000	0000000000	00000000	00000000	000000000	00000000	0000000000	0000000000	000000000000000000000000000000000000000	00 00	000000000000000000000000000000000000000	0000000000	000000000
su	ηĒ	5]	992	i >	0000000000	000000	000000000000000000000000000000000000000	0000000000	00000000	00000000	000000000	00000000	0000000000	0000000000	000000000000000000000000000000000000000	00 00	0000000000000	0000000000	000000000
su	ηĒ	6]	[992 []]	i >	0000000000	000000	000000000	0000000000	00000000	00000000	000000000	00000000	0000000000	0000000000	000000000000000000000000000000000000000	00 00	0000000000000	0000000000	000000000
su	ηĒ	71	[992 []]	i>	0000000000	000000	000000000	0000000000	00000000	00000000	000000000	00000000	0000000000	0000000000	000000000000000000000000000000000000000	00 00	0000000000000	0000000000	000000000
su	ηĒ	8]	992	i>	550000000	000000	000000000	0000000000	00000000	00000000	00000000	00000000	0000000000	0000000000	000000000000000000000000000000000000000	00 00	0000000000000	0000000000	000000000
su	ηĒ	9]	[992 []]	i >	555000000	000000	000000000	0000000000	00000000	00000000	000000000	00000000	0000000000	0000000000	000000000000000000000000000000000000000	00 5	000000000000000000000000000000000000000	0000000000	000000000
su	ηĒ	10]	992	i>	055000000	000000	000000000	0000000000	00000000	00000000	00000000	00000000	0000000000	0000000000	000000000000000000000000000000000000000	00 00	0000000000000	0000000000	000000000
su	ηĒ	11]	[992]	j>	555000000	000000	000000000000000000000000000000000000000	0000000000	00000000	00000000	000000000	00000000	0000000000	0000000000	000000000000000000000000000000000000000	00 00	000000000000000000000000000000000000000	0000000000	000000000
su	ηĒ	12]	[992]	1 >	005000000	000000	000000000000000000000000000000000000000	0000000000	00000000	00000000	000000000	00000000	0000000000	0000000000	000000000000000000000000000000000000000	00 00	00000000000000	0000000000	000000000
su	ηĒ	13]	992	i >	0000000000	000000	000000000000000000000000000000000000000	0000000000	00000000	00000000	000000000	00000000	0000000000	0000000000	000000000000000000000000000000000000000	00 00	0000000000000	0000000000	000000000
Isu	ηĒ	14]	[992 []]	i >	0000000000	000000	000000000000000000000000000000000000000	0000000000	00000000	00000000	000000000	00000000	0000000000	0000000000	000000000000000000000000000000000000000	00 00	00000000000000	0000000000	000000000
su	ηĒ	15Ì	[992 []]	i>	0000000000	000000	05500000	0000000000	00000000	00000000	000055000	00000000	0000000000	0000000000	000000000000000000000000000000000000000	00 00	0000000000000	0500000000	000000000
su	ηĒ	16]	992	i>	550000000	000000	05555000	0000000000	00000000	00000000	000005550	00000000	0000000000	005000000	00000000050	50 0	0000000000000	0556000000	000000000
su	ηĒ	17]	[992]	j>	5555000000	000000	00555560	0000000000	00000000	00000000	000005555	55000000	0000000000	505550000	00000000055	65 5	000000000000000000000000000000000000000	0556650000	000000000
su	ηĒ	18]	[992]	j>	5555550000	000000	00555566	500000000	00000000	00000000	000000559	55550000	0000000000	056555500	00000000055	66 6!	550000000000	0555666500	000000000
su	ηĒ	19]	[992]	1 >	0555550000	000000	00055566	655000000	00000000	00000000	000000000	55555500	0000000000	006655550	00000000005	66 6	665000000000	0555666660	000000000
su	ηĒ	20]	[992]	1 >	0005550000	000000	00055566	665550000	00000000	00000000	000000000	05555500	0000000000	006666555	000000000000000000000000000000000000000	56 6	666600000000	0555666666	000000000
su	ηĒ	21]	[992]	>	0000050000	000000	00000566	6666650000	00000000	00000000	000000000	00555550	0000000000	005666665	000000000000000000000000000000000000000	55 6	666650000000	0005566666	500000000
su	n [22]	[992]	>	0000000000	000000	00000056	6666660000	00000000	00000000	000000000	000555555	0000000000	000566666	000000000000000000000000000000000000000	00 5	666655000000	0000066666	500000000
su	n [23]	[992]] >	000000000	000000	00000005	5566665000	00000000	00000000	000000000	00000555	0000000000	0000066666	50000000000	00 00	056655000000	0000056666	550000000
su	n [24]	[992]	>	0000000000	000000	000000000000000000000000000000000000000	555665500	00000000	00000000	000000000	00000055	5000000000	000005666	500000000000	00 00	000655000000	0000000566	555000000
su	n [25]	[992]	>	0000000000	000000	000000000000000000000000000000000000000	055565500	00000000	00000000	000000000	00000000	5000000000	0000000056	500000000000	00 00	000005500000	0000000055	555000000
_ sul		26]] >	0000000000	000000	000000000000000000000000000000000000000	005550500	00000000	00000000	000000000	00000000	0000000000	0000000005	050000000000	00 00	000000500000	0000000005	055000000
" su	n [27]	[992]] >	0000000000	000000	000000000000000000000000000000000000000	000550000	00000000	00000000	000000000	00000000	0000000000	0000000000	000000000000000000000000000000000000000	00 00	0000000000000	0000000000	000500000
su	n [28]	[992]] >	0000000000	000000	000000000000000000000000000000000000000	0000000000	00000000	00000000	000000000	00000000	00000000000	0000000000	000000000000000000000000000000000000000	00 00	0000000000000	0000000000	000000000
su	n [29]	[992]] >	0000000000	000000	000000000000000000000000000000000000000	050000000	00000000	00000000	000000000	00000000	0000000000	0000000000	000000000000000000000000000000000000000	00 00	0000000000000	0000000000	000000000
su	n [30]	[992]] >	0005500000	000000	000000000000000000000000000000000000000	005500000	00000000	00000000	000000000	00000000	00000000000	0000000000	000000000000000000000000000000000000000	00 00	0000000000000	00000000000	000000000
su		31]	[992]] >	0000550000	000000	000000000000000000000000000000000000000	005550000	00000000	00000000	000000000	00000000	00000000000	0000000000	000000000000000000000000000000000000000	00 00	0000000000000	00000000000	000000000
su		32]	[992]	>	0000550000	000000	000000000	000550000	00000000	00000000	000000000	00000000	0000000000	0000000000	000000000000000000000000000000000000000	00 00	0000000000000	00000000000	000000000
su		33]	[992]] >	0000050000	000000	000000000000000000000000000000000000000	000050000	00000000	00000000	000000000	00000000	00000000000	0000000000	000000000000000000000000000000000000000	00 00	0000000000000	0000000000	000000000
su		34]	[992]] >	000000000	500000	000000000000000000000000000000000000000								000000000000000000000000000000000000000		0000000000000	00000000000	000000000
su		35]	[992]	>	000000000	550000	000000000000000000000000000000000000000	0000000000	00000000	00000000	000000000	00000000	00000000000	0000000000	000000000000000000000000000000000000000	00 00	0000000000000	00000000000	000000000
su		36]		>				0000000000	*******	*******	000000000				000000000000000000000000000000000000000	** *	0000000000000		
su	ηĘ	37]	[992]] >											000000000000000000000000000000000000000		0000000000000		
su		38]	992												000000000000000000000000000000000000000		0000000000000		
su	ηĘ	39]		$\left \right\rangle$	********						000000000				000000000000000000000000000000000000000	** *	0000000000000		****
su	ηĽ	40]			********	*****		*********	*******	*******			********	********	*********	** *	00000000000000		* * * * * * * * * *
su		41]															00000000000000		
su	ηĽ	42]	992	>	0000000000	000000	000000000000000000000000000000000000000	0000000000	00000000	00000000	000000000	00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00 00	00000000000000	00000000000	0000000000

Segment angle