Current Status and Future Outlook of TPEX

Ethan Cline & Ivica Friščić

ethan.cline@stonybrook.edu

Center for Frontiers in Nuclear Science Department of Physics and Astronomy Stony Brook University

Streaming Readout Workshop VIII

April 30, 2021

Existing Two-Photon Reach

Not covering the existing region

TPEX @ DESY!

TPEX @ DESY!

TPEX Calorimeter Test Setup

- Nine 2x2x20 cm lead tungstate (PbWO4) crystals
- Wrapped with one layer of white Tyvek (0.4 mm thick) and with one layer of opaque aluminum foil (0.09 mm thick)
- Hamamatsu R1166 PMT powered by LeCroy 1461N modules

TPEX Calorimeter Test Setup

DAQ Electronics and Detector Mapping

- Triggered DAQ
 - Caen V792 QDC (Energy)
 - CPU Time
- Streaming DAQ
 - Caen V1725 Digitizer (Energy, waveform, timing)
 - CPU Time

6	7	8
3	4	5
0	1	2

QDC channels

Digitizer channels

6	7	
3	4	5
Tr	1	2

Example Spectra Comparison

- Gain matched at 5.2 GeV
- Data taken at 2, 3, 4, 5 GeV

Advantage of Streaming Readout

- Due to QDC readout limitations (dead time, trigger signal size, and the requirement that the electron needs to strike the trigger detectors in a given time window) causes the QDC to see fewer events than DIGI
- Strategy to select all events produced by the electron beam:
 - Use the time stamp information
 - Select coincidence events between the trigger signal and other crystals
 - Use selected events to determine coincidence/time offsets between crystals
 - Use the time offsets on original data
- Example: for one data set we see ${\sim}10k$ QDC events and ${\sim}20k$ DIGI events.

Identification of QDC Events in Digitizer Data

- We start with CH0-CH4 coincidence preselected data
- Number of recorded triggers in digitizer is \sim 4% smaller than in QDC (Digitizer events with "conversion not finished" error were discarded)
- Direct comparison of QDC and digitizer data would be difficult
- Idea: calculate the time intervals between subsequent events in QDC and digitizer and compare these

Uncorrected Time in Readout

Corrected Time in Readout

Uncorrected Energy in Readout

13 / 20

Corrected Energy in Readout

- QDC was not clearing at being of run
- Throw out first 30-40 QDC events

Comparison to Simulation

Outlook

- Triggered and streaming readout schemes were used to measure electron beam with 3x3 PbWO4 calorimeter
- Using the offline analysis the advantage of the streaming readout compared to the triggered readout was demonstrated
- While correlating QDC and Digitizer data we successful showed agreement in energy deposition
- In next beam time we will test 5x5 PbWO4 calorimeter at DESY Test Beam Facility

Future DAQ Tests

- DRS Board from PSI
- One DRS4 chip samples four input signals simultaneously 0.7 - 5 GSPS with 1024 sampling points each
- Readout rate is 500 events/sec
- Readout via Xilinx SPARTAN 3 FPGA

Picture from Stefan Ritt. https://www.psi.ch/en/drs/evaluation-board

Future DAQ Tests

- INFN Waveboard
- Commercial Zynq mezzanine card
- Selectable gain
- PLL to generate and distribute clocks
- External clock and reference signals
- 12 channel, 12/14 bit 250 MHz
- USB, SATA, SFP, GbE, serial, I2C ports for high and low speed communication

Picture from Fabrizio Ameli, SRO Workshop IV. https://agenda.infn.it/event/18179/contributions/ 89837/attachments/63423/91184/ SRO_2019_05_23_IV_WRKSP_AMELI.pdf

TPEX Projected Reach

Any Questions?

TPEX Sketch

- Very conceptually simple
- Will run at DESY with e^+ and e^- beam
- Direct $R_{2\gamma}$ measurement

- LH₂ target
- 5 sets of 5×5 PbWO₄ crystals
- 2 luminosity monitors

