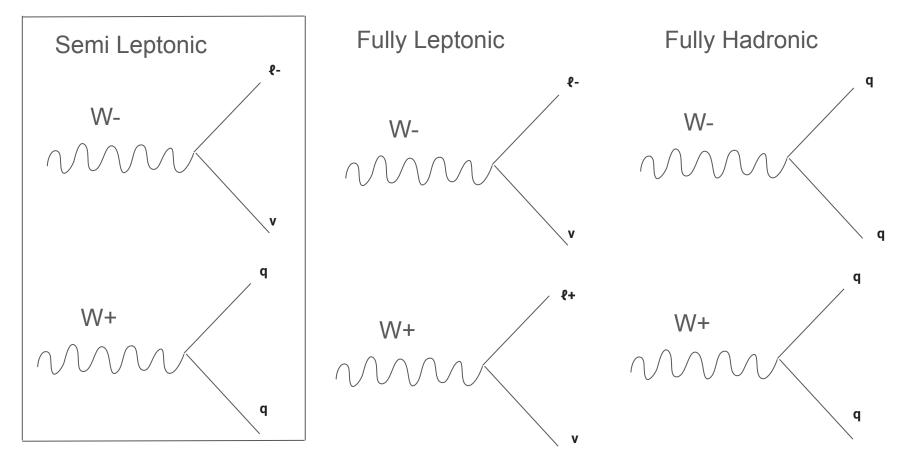
Measuring the W Mass

Semi Leptonic Kinematic method

Ayman Noreldaim & Nate Martinez

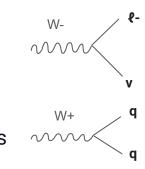

Intro

- The W boson is the carrier of the weak force and its mass is an important parameter in the standard model.
- The current value is 80.379 GeV +/- 12 MeV.
- The Collider Detector at Fermilab measurement was 7 standard deviations higher than the value predicted by the standard model, suggesting new physics contributing to the mass.
- This created a huge controversy, sparking a new effort to accurately measure the W mass.
- At FCCee, the precision could be lowered to 1 MeV which would help in developing an explanation for the current discrepancy.

Intro cont.

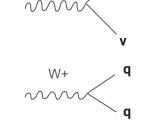
- In this project, we measured the W mass by measuring the W decay products.
- W bosons are produced in pairs (W+W-) in electron-positron collisions.
- Each W boson can decay hadronically (qq) or leptonically (l+nu).

Feynman Diagrams

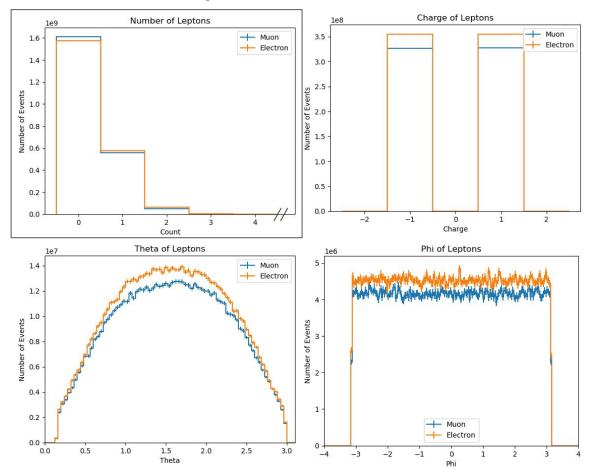


Procedure

We're measuring the invariant mass of the qq Jets in the case that the W+W- bosons $\sim \sim$ decay into a Lepton + Neutrino and 2 Quarks. (Semi Leptonic Kinematic Method).

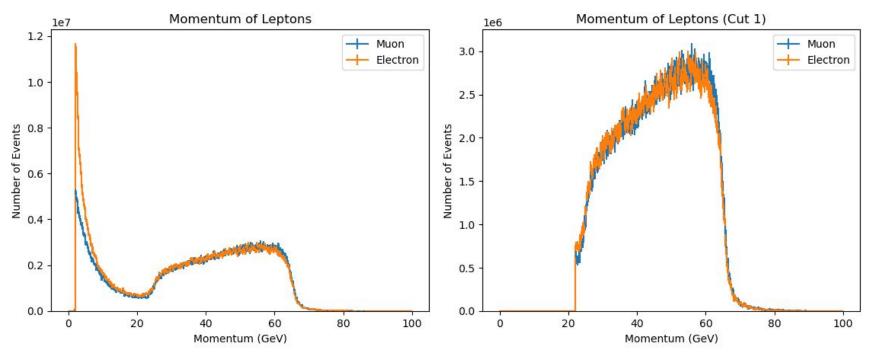

- The datasets used consisted of electron-positron collisions producing W+W- bosons at 180 GeV center of mass energy.
- First, we select leptons from the decay products (muons and electrons).
- Appropriate cuts are made to reduce background.
 - First cut on lepton momentum to remove soft leptons from radiation.
 - Second cut to select specifically a single muon or electron.

Datasets:
yfsww_ee_ww_noBES_ecm180_mw80379_ww2085
yfsww_ee_ww_noBES_ecm180_mw80479_ww2085
yfsww_ee_ww_noBES_ecm180_mw80279_ww2085

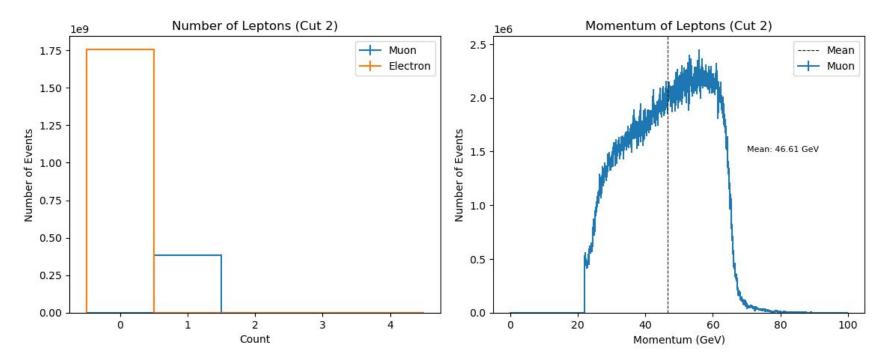


Procedure cont.

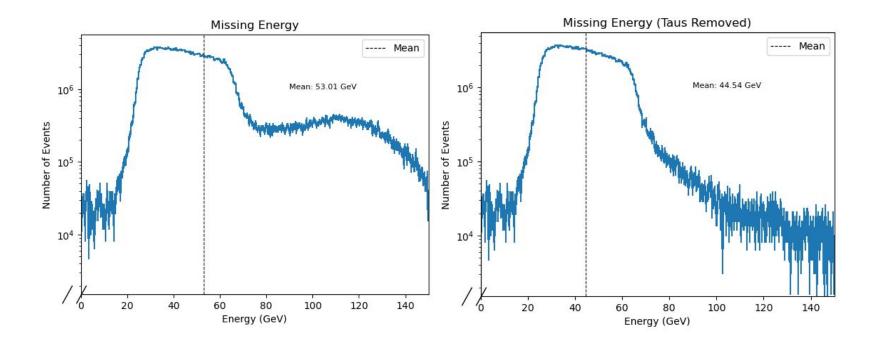
- The neutrino cannot be detected, so after the lepton has been selected and removed, the remaining decay products are clustered into two jets.
- The two jets are then combined into a dijet and a qq invariant mass plot is made.
- This is repeated to create qq invariant mass plots for different W mass assumptions.
- Last, the plots are fitted to Breit-Wigner distributions.



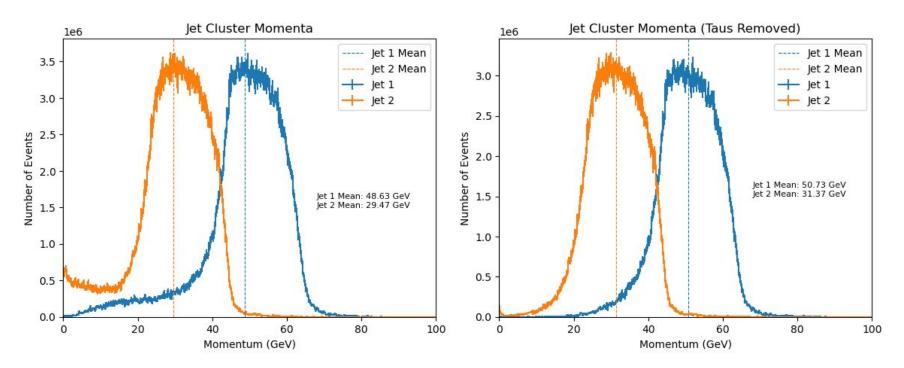
Data on Selected Leptons


First Cut

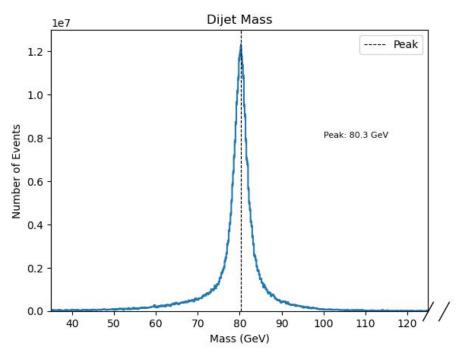
- Selected leptons with > 22 GeV momentum to reduce background.
- First Peak represents soft muons from radiation.


Second Cut

- Selected events with 1 muon and 0 electrons to ensure decay is semi-leptonic.
- The average momentum of remaining leptons is 46.61 GeV.

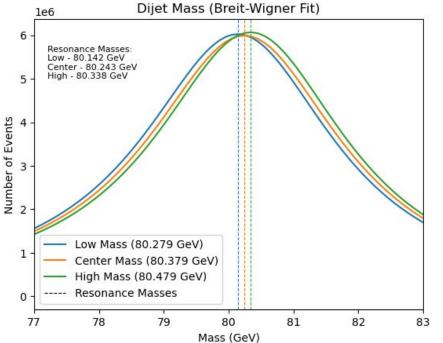

Missing Energy Graphs

- Missing energy represents the energy of neutrinos since they cannot be detected.
- A hump was discovered in the graph around 80 120 GeV.
- Filtering out events which included tau decay products removed this hump.



Jet Momenta

- After lepton removal, the remaining decay products all came from the hadronic decay W boson.
- The remaining decay products were clustered into two jet clusters shown below.



Dijet Invariant Mass

- When the two jets are combined, the peak mass of the resulting dijet should approximate the mass of the W boson.
- The dijet mass peak occurs at 80.3 GeV, very close to the current value of 80.379 GeV.
- This plot is then made again with samples using different W mass assumptions.

Breit-Wigner Fit

- The resonance masses of the Breit-Wigner fits represent the peaks of the distributions.
- The resonance masses are 80.142 GeV, 80.243 GeV, and 80.338 GeV.

	Mass Assumption (GeV)	Resonance Mass (GeV)
Low Mass	80.279	80.142
Center Mass	80.379	80.243
High Mass	80.479	80.338

Breit-Wigner Fit Parameters

	Resonance Mass (GeV)	Width (GeV)	Normalization
Low Mass	80.142	3.642	34447310.880
Center Mass	80.243	3.662	34451518.966
High Mass	80.338	3.622	34493597.976

Standard Deviations

	Resonance Mass (MeV)	Width (MeV)	Normalization
Low Mass	14.000	39.530	263990.792
Center Mass	14.443	40.778	270846.745
High Mass	14.174	40.022	269125.849

Breit-Wigner Fit Observations

- Accounting for standard deviation, the resonance masses are separated by 100 MeV as expected.
- However, all the resonance masses were about 140 MeV lower than the mass assumed in the sample.
- This suggests there is some systematic effect in the measurements or computation causing this discrepancy.

Conclusions

- The W boson can also decay into Taus which cannot be filtered out in reality but must be accounted for.
- Changing the W mass assumption in the simulation shifts the dijet mass accordingly.
- There is an unknown bias we have shifting the Breit-Wigner fit of the dijet invariant mass around 140 MeV to the left of the assumed masses.
- In the future, we should try to better filter out background events, such as

Z boson events.