Impact of Coatings on the Cosmic Explorer Sensitivity

Kevin Kuns

April 23, 2024

CE-G2400028

Scaling of fundamental noises

CTN not as significant in long detectors because * CTN scales as 1/Lw

- ★ For fixed arm cavity geometry, beamspot size $w \propto \sqrt{L}$ and CTN scales as $L^{-3/2}$
- * For fixed instrument bandwidth, quantum shot noise scales as $L^{-1/2}$

Baseline Cosmic Explorer coating parameters

- ✤ Baseline Cosmic Explorer coatings are the same as the, as yet unrealized, A+ coating target: a factor of two CTN below current aLIGO coatings and 0.5 ppm absorption
- ★ Can also consider AlGaAs coatings with even less loss. Take as an estimate here the upper limit of 20% aLIGO CTN measured in LIGO-G2001592. (Thermo-optic noise is not included here.)
- ***** Beams need to be minimized in a 40 km detector to fit in the 120 cm beam tubes. Baseline symmetric arm cavity with stability $g^2 = 0.11$.
- * Minimum possible beam (corresponding to an unstable cavity^{*}) used for AlGaAs in these estimates, resulting in the following beam radii on the test masses

Coating	stability g^2	40 km	20 km
A+/aLIGO	0.11	12.0 cm	8.5 cm
AlGaAs	0.00	11.6 cm	$8.2\mathrm{cm}$

*I'll quit if we actually try to do this.

Strain sensitivity for different coatings

40 km Cosmic Explorer

20 km Cosmic Explorer

Astrophysical performance of a 40 km detector

Equal mass binary horizons

- Improvement beyond A+ coatings has minimal impact

 - No improvement in BBH range or early warning time

	Range [Mpc]			
Coating	BNS	BBH	$t_{ m early}[{ m min}]$	z _{max}
aLIGO	3200	6000	100	79
A+	3600	6100	100	94
AlGaAs	3900	6100	100	103

Astrophysical performance of a 20 km detector

Equal mass binary horizons

- Improvement beyond A+ coatings has a modest impact
 - 20 % improvement in BNS range, 2 % improvement in BBH range, 22 % improvement in maximum detectable redshift
 - No improvement in early warning time

	Range [Mpc]CoatingBNSBBHaLIGO18005600			
Coating	BNS	BBH	$t_{ m early}[{ m min}]$	z_{\max}
aLIGO	1800	5600	91	36
A+	2400	5900	91	46
AlGaAs	2800	6000	91	57

Low frequency tuning for a 40 km detector

EXPL

ORER

Improvement beyond A+ coatings would have a modest impact for a 40 km detector tuned for low frequency sensitivity

- 11% improvement in BNS range, 20% improvement in maximum detectable redshift
- No improvement in BBH range or early warning time

Range [Mpc]				
Coating	BNS	BBH	$t_{ m early}[{ m min}]$	z _{max}
aLIGO	3500	6100	100	82
A+	4200	6100	100	103
AlGaAs	4600	6100	100	123

Coating absorption: It's not all about loss

- * Achieving the 1.5 MW arm power target will be one of the most significant challenges in reaching the CE design sensitivity
- * Adjust arm power to keep absorbed power constant as a rough metric for the relative importance of reducing absorption and CTN
- ★ Low absorption more important for a 40 km detector since the noise is dominated by shot noise

Note: Beam size not reduced for AlGaAs

Coating absorption: It's not all about loss

- * Achieving the 1.5 MW arm power target will be one of the most significant challenges in reaching the CE design sensitivity
- * Adjust arm power to keep absorbed power constant as a rough metric for the relative importance of reducing absorption and CTN
- Low absorption more important for a 40 km detector since the noise is dominated by shot noise
- * Absorption and CTN of more similar importance for a 20 km detector

Note: Beam size not reduced for AlGaAs

Summary

- * Coating Brownian noise is less significant in long detectors because it scales as $L^{-3/2}$ (for fixed arm cavity geometry) while quantum shot noise scales as $L^{-1/2}$ (for fixed instrument bandwidth).
- Improving CTN beyond the nominal CE target of A+ coatings has a minimal impact for a 40 km detector and a modest impact for a 20 km detector or a 40 km detector tuned for low frequency sensitivity.
- ★ Keeping coating absorption low is critical to achieving the goal of 1.5 MW arm power.
- * AlGaAs coatings would need to support beams with radii on the test masses in excess of 8.2 cm for a 20 km detector and 11.6 cm for a 40 km detector.

Extra

40 km low frequency tuning

Equal mass binary horizons

- Total - Newtonian Substrate Thermal **Ouantum Vacuum** Suspension Thermal - Residual Gas aLIGO CTN Seismic Coating Thermal 10^{2} A+ CTN AlGaAs CTN 10-24 Redshift Strain [1/Hz^{1/2}] 10^{1} 10^{-25} 10^{0} 10^{1} 10^{2} 10^{3} Total source-frame mass $[M_{\odot}]$ 10^{2} 10^{3} 10^{1} Frequency [Hz]

Noise budget with A+ coatings

Coating absorption and CTN for LIGO detectors

