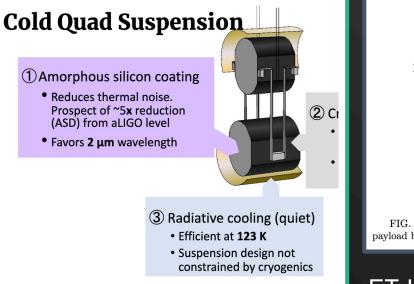

Facility compatibility with cryogenics: what it means for the CE facility

2nd Cosmic Explorer Symposium, 4/24/2024, Stefan Ballmer

CE-G2400029

October 2021


(alog 60149)

Flexibility is key

- Detectors are guaranteed to evolve over their life
 - Example: iLIGO / eLIGO / Advanced LIGO / A+ / A#:
 - Large output mode cleaner
 - Stable recycling cavities
 - Laser enclosures
 - Squeezing vacuum tanks
 - Filter cavity
 - ...
 - BIG BUILDINGS & LAND around them
 - But: LIGO arms are untouched in ¼ century!
- Need to build in flexibility from the start

Proposed Cryogenics technologies

Voyager technology, Silicon @ 123K, 2um

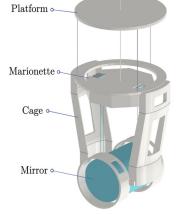
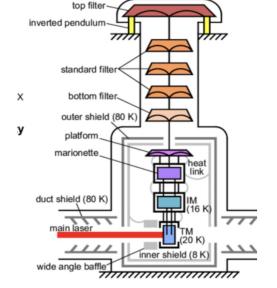
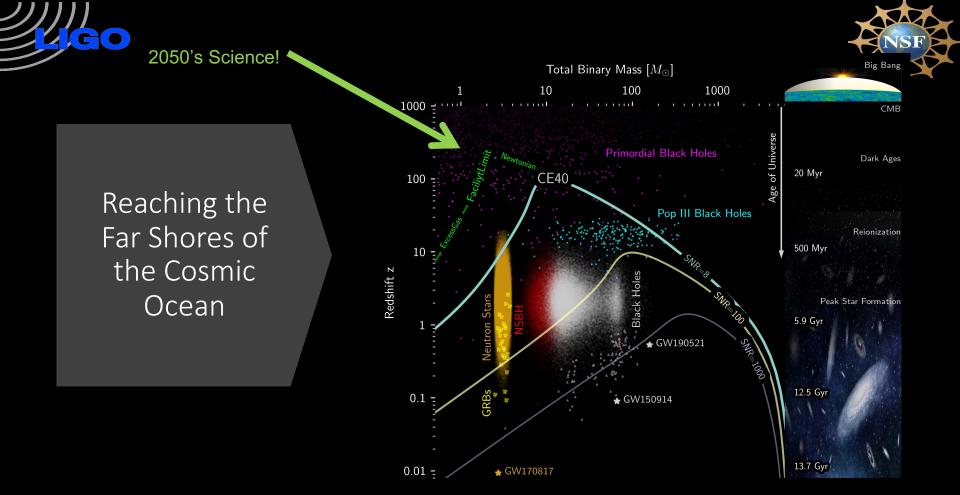



FIG. 2: Baseline design of the ET-LF cryogenic payload based on the AdVirgo double pendulum design.


ET-LF Silicon @ 10 K, 1550nm

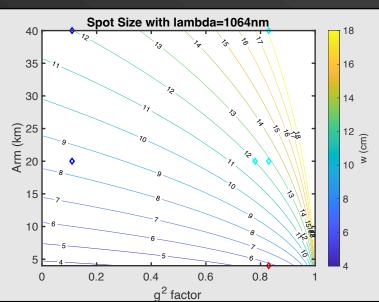
KAGRA technology, Sapphire @ 20K, 1 um

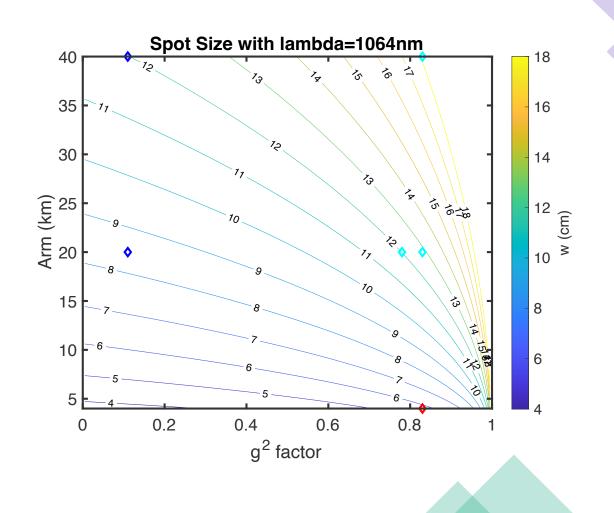
Big Picture: Anticipating Technology Needs

- i/e/a/+/# -LIGO all run on same basic technology
 - 1064nm light, SiO2 optics (....)
- Cosmic Explorer plans to use the same basic technology, but alternatives utilizing cryogenic technology have been proposed
 - 123K Si and <20K Si (or Sapphire)
 - Si band gap requires lambda>~1.5um, maybe 2um.
- Facility should accommodate potential upgrades

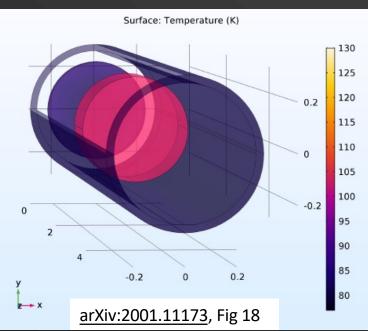
• to Den Martynov

Back to Making Facilities Flexible..


22


Photo: Robert Ward / Stefan Ballmer (2016/03/12

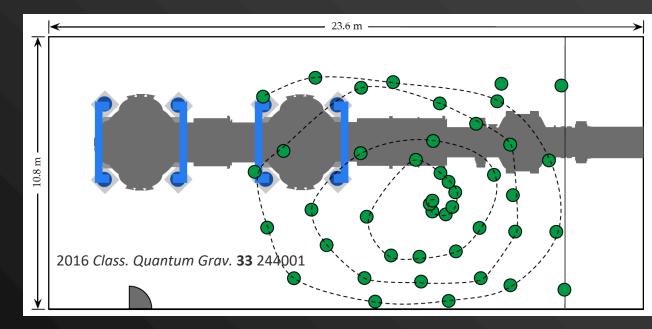
- $w_{min} = \sqrt{\frac{L\lambda}{\pi}}$, about 12cm for 40km, 1.064um,
- Si \rightarrow longer wavelength \rightarrow larger beams \rightarrow bigger tubes,
- Choice of beam tube diameter is fixed very early in the project!
- Bigger tubes mitigate risk in other ways:
 - CTN reduction with bigger sports at 1um
 - Extra scattering noise margin
 - But cost is high...



Cryogenic beam tube shields and baffling!

- Radiation: Cryogenic beam tube shield required for O(50m)
 - Otherwise: environmental heating > laser apsorption
 - Needed behind ITM as well
 - Cryogenic Reaction mass
 - Cryogenic folding mirrors? Beam splitter?

 Gas: Cryogenic baffling required further out to avoid ice build-up?


- Cryogenically shielded area would likely include folding mirrors
- Active temperature control under varying load (locked vs unlocked) is necessary.
- Keep cooling-induced vibrations away from interferometer...

otical dista e=9.00E+01 distance=1.05E+02 00E+01 Optical distance=1.65E+02

distance=0.00F

Newtonian Noise Cancellation vs Cryogenics?

 Newtonian Noise Cancellation arrays are required in exactly the same area

Other Operational and Design Constraints

• Long cooling times (month) make rapid interventions impossible

• Interferometer alignment will change during cooling

• Substrate choice

- Float Zone vs. Czochralski (has size limit)
- Coating choice
 - aSi

Take-away points

- Flexibility is key for success, not just nice-to-have
 - For cryogenics and other potential new technology
- For Arms / Vacuum System size
 - Will likely come down to a tough cost vs flexibility argument
- For Corner / End Stations (LVEA)
 - Reserving in extra floor space and land around the building is comparatively cheap