Nuclear physics with gravitational waves Opportunities in the CE era

Elias R. Most & Claudia Ratti

Caltech Computational Relativistic Astrophysics comp-relastro.caltech.edu

SF-S>

S TAPIR

Dietrich, Hinderer, Samajdar (2020)

Dietrich, Hinderer, Samajdar (2020)

Equation of state from inspiral

Weber+(2007)

Equation of state from inspiral

CE-era: $\mathcal{O}(10^5)$ inspirals per year, $\mathcal{O}(100)$ with SNR 100

Large number of high SNR events promises tight constraints on EoS

Pratten, Schmidt, Williams (2022)

Evans+ arXiv:2109.09882

Waveform systematics (e.g., dynamical tides) Hinderer+, Steinhoff+,Pratten+, Gamba+

Uncertainties in recovery of $\tilde{\Lambda}$

Gamba+,Read+,Yagi+,Raithel+,Chen+,...

Nuclear physics from the inspiral

Highly accurate inspirals could constrain nuclear matter parameters

Phase transitions at $\mu_B > 900 \,\mathrm{MeV}$

Chatziioannou+, Han+, De+, Tews+, Essick+, Mroczek+, Tan+, Drischler+, Pang+, Annala+,Gorda+,...

best for strong first-order transitions

Nuclear symmetry energy

Essick+, Li+,Holt+,...

Can also use data to try an look for dynamical EoS corrections

Chemical equilibration Yang+, Arras+, Weinberg+, Most+,.

General viscosities Cutler+, Ripley+,...

Phase conversion dissipation Han+,...

Dietrich, Hinderer, Samajdar (2020)

Prompt-collapse and the maximum mass

Highest densities probed in maximum mass neutron stars

Can directly probe QCD and sound speed Drischler+, Ecker+, Gorda+, Tews+...

Mergers may not probe higher densities Ujevic+

Bauswein+(2020)

 $M_{\text{max}} = M_{\text{o}}^{2.4} = M_{\text{o}}$

See also Ye+, Fishbach+, Tan+, Landry+, Most+, Dexheimer+, Fattoyev+, Zevin+

Numerical relativity simulations (in various approximations) have shown strong correlations between prompt black hole formation and maximum mass

$$M_{\text{max}}(M_{\text{thres}}, \tilde{\Lambda}_{\text{thres}}) = aM_{\text{thres}} + b\tilde{\Lambda}_{\text{thres}} + c,$$

Bauswein+,Köppel+,Tootle+,Kölsch+,Kashyap+

Threshold mass may reveal compressibility Perego+

Dietrich, Hinderer, Samajdar (2020)

Cosmic Colliders: Hot and dense matter!

Bauswein+,Öchslin+,Most+, Raithel+, Figura+, Kastaun+,Prakash+, Blacker+,Liebling+, Huang+, Perego+,Hammond+,Radice+...

Equation of state from post-merger

Post-merger frequency spectrum is quasi-universal!

Can correlate f_2/f_{peak} with EoS!

Shibata, Bauswein+, Stergioulas+, Hotokezaka+, Takami+, Bernuzzi +,Rezzolla+, Raithel+, Vretinaris+,...

Bernuzzi+ (2015), see also Bauswein+(2014)

Post-merger gravitational wave emission probes new regimes of physics!

Post-merger gravitational wave emission probes new regimes of physics!

Exotic degrees of freedom?

Bauswein+, Huang+, Most+,Prakash+, Radice+,Sekiguchi+,Weih+... (+ many more for EoS uncertainty!)

Post-merger gravitational wave emission probes new regimes of physics!

Exotic degrees of freedom?

Bauswein+, Huang+, Most+,Prakash+, Radice+,Sekiguchi+,Weih+... (+ many more for EoS uncertainty!)

Finite-temperature

and composition?

Bauswein+,Figura+, Hammond+, Hanauske+,Perego+,Raithel+...

Post-merger gravitational wave emission probes new regimes of physics!

Magnetic fields?

Cosmic

Explorer

Ciolfi+, Most+, Giacomazzo+, Kiuchi+, Palenzuela+,...

Exotic degrees of freedom?

Bauswein+, Huang+, Most+, Prakash+, Radice+,Sekiguchi+,Weih+... (+ many more for EoS uncertainty!)

Finite-temperature and composition?

Bauswein+, Figura+, Hammond+, Hanauske+,Perego+,Raithel+...

Post-merger gravitational wave emission probes new regimes of physics! Magnetic fields?

Cosmic

Explorer

Finite-temperature

Exotic degrees of freedom?

Bauswein+, Huang+, Most+,Prakash+, Radice+,Sekiguchi+,Weih+... (+ many more for EoS uncertainty!)

and composition?

Bauswein+,Figura+, Hammond+, Hanauske+,Perego+,Raithel+...

Elias R. Most & Claudia Ratti

Neutrino effects? (in dense matter)

Alford+, Camelio+, Foucart+, Hammond+, Most+, Radice+, Shibata+,...

Nuclear physics from the post-merger

Inferences of the post-merger signal can be correlated with expectation from inspiral

Improved radius constraints!

Bose+, Breschi+, Criswell+, Wijngaarden+, Chatziioannou+,...

Deviations from inspiral could reveal new phases of matter (first-order PT)

Bauswein+, Most+, Huang+, Prakash+, Raithel+,...

Nuclear physics from the post-merger

Beyond the equation of state

The merger probes hot matter.

Finite temperature correction

Bauswein+, Figura+, Raithel+, Hammond+, Fields+,...

May depend on phases of matter (e.g., hyperons, muons, etc.)

Blacker+, Mroczek+,...

Nuclear composition can potentially leave direct imprints

Bulk viscosity/chemical equilibration? Alford+,Hammond+,Most+,Espino+,Zappa+,Chabanov+

Phase conversion dissipation??

Nuclear physics from multi-messenger

Mass ejecta and relativistic outflows can power afterglows and gamma-ray bursts!

Multi-messenger constraints Power law model $-9 < \alpha < 3.3$ on $M_{\rm TOV/max}$ and $\tilde{\Lambda}$? Margalit+, Rezzolla+, Shibata+, Ruiz+, Perego+ Nathanail+, Radice+, Coughlin+, Kiuchi+... $1.1 < M_{\rm min}/M_{\odot} < 1.3$ current constraint $f_{\rm i, GW} = 0.25 \pm 0.05$ APR4 (remnant life time & mass) 2.2 2.0 10.5 11.5 12.5 13.5 14.5 BH $R_{1.4}$ [km] $M_2 \, [{
m M}_{\odot}]$ 1.8 Other scenarios: Salafia+(2022), also Sarin+ 1.6 Connections **Resonant shattering** HMN 1.4 flares?? with GRB Tsang+, Neill+ Jet 1.2 population! NS GRB QPOs?? 1.0 ⊾ 1.0 1.5 2.0 Chirenti+ $M_1 [M_{\odot}]$

Thank you!

SE SXS TAPIR

Caltech Computational Relativistic Astrophysics comp-relastro.caltech.edu