Resonances in QCD and their Couplings from Anisotropic Clover Lattices

Arkaitz Rodas Bilbao

Spectroscopy in QCD

How do quark and gluons combine inside unstable hadrons?

We need a combination of lattice QCD and experiment to answer that question

Guide experimental searches (π_1)

Confirm existence (tetraquarks, pentaquarks, glueballs)

Understand their nature (observations are not enough!)

"hadron spectroscopy explores the possible bound combinations of quarks and gluons allowed by the interactions of QCD"

Pentaquarks

Hadspec: The basics

Optimal lattice setup for spectroscopy

Improved, stout-smeared lattices

High anisotropy $\xi \sim 3.5$

$$\sum_{\mathbf{n}} e^{-E_{\mathbf{n}}t} \langle 0 | O_{\mathbf{f}}(0) | \mathbf{n} \rangle \langle \mathbf{n} | O_{\mathbf{i}}^{\dagger}(0) | 0 \rangle$$

Efficient energy level extraction

Full distillation (very large N_v available)

Annihilation lines averaged over many time slices (full time extent)

Large number of interpolators $\mathcal{O}_b \sim \bar{q} \Gamma_b q, \pi \pi, KK, ..., 4\pi, ...$

Full GEVP solution (many excited states)

$$\det \left[F^{-1}(P, L) + K \right] = 0$$

Fit-parameters

$$t(s) = \frac{K}{1 - i\rho(s)K}$$

Proposal Goals

1 Determine the spectrum of ordinary and non-ordinary hadrons

Compute basic parameters of resonances in multiple systems (degenerate, light, charm, different m_π)

Both RTX2080, MI-100 and new "24s" time requested

2 Develop and implement multi-body decay formalisms to the extraction of resonances

Capitalizing on recent developments to study 3π systems for I=2 and I=0

"24s" time requested

3 Kick start our meson-baryon program

Long time invested in developing our "machinery" for baryon analyses

We start with realistic projects

$$N\pi \to \Delta_{1/2}$$
 $N\pi \to \Delta_{3/2}$

MI-100 time requested

4 Continue our EM analyses

More photoproduction analyses in the future

Keep pushing for the first "form factor" numerical evaluations

"24s" time requested

Example: Hybrid exotic candidates

Lattice QCD (and models) predicts a lightest $J^{PC}=1^{-+}$, isolated hybrid

It decays to two pseudo-scalar mesons

Extracted, recently, both from experiment (JPAC/COMPASS) and Lattice QCD (HadSpec)

Example: Hybrid exotic candidates

Out of 8 possible decay modes, Lattice QCD predicts a dominant one

We "know" final decay (final states)

		m thr./MeV	$\left \left c_i^{ m phys} \right / { m MeV} ight $	$\Gamma_i/{ m MeV}$
	$\eta\pi$	688	0 o 43	$0 \rightarrow 1$
	$ ho\pi$	910	$0 \rightarrow 203$	$0 \rightarrow 20$
	$\eta'\pi$	1098	$0 \rightarrow 173$	$0 \rightarrow 12$
	$b_1\pi$	1375	$799 \rightarrow 1559$	$139 \rightarrow 529$
	K^*K	1386	$0 \rightarrow 87$	$0 \rightarrow 2$
	$f_1(1285)\pi$	1425	$0 \rightarrow 363$	$0 \rightarrow 24$
	$ ho\omega\{^1\!P_1\}$	1552	$\lesssim 19$	$\lesssim 0.03$
	$ ho\omega\{^3\!P_1\}$	1552	$\lesssim 32$	$\lesssim 0.09$
	$ ho\omega\{^5\!P_1\}$	1552	$\lesssim 19$	$\lesssim 0.03$
	$f_1(1420)\pi$	1560	$0 \rightarrow 245$	$0 \rightarrow 2$
	$\Gamma = \sum_i \Gamma_i = 139 \rightarrow 590$			

Octet partner found by BESIII (there should be two!!!)

Not-so-expected discovery

1

Opportunity to capitalize on previously used lattices for extraction! $m_\pi \sim 700\,\mathrm{MeV}$

When decreasing $m_\pi \to {
m multi-body}$ thresholds open

Plethora of formalism works on how to extract 3b amplitudes from the spectrum (not discussed here)

HadSpec has also been leading numerical calculations

Full 3b amplitude

Published on PRL (editor's choice)

2 Proposal capitalizes on these achievements

Expensive, looking at I=2 final states

 $ho(s)
ightarrow \int d\sigma_1 \int d\sigma_3 \, F(s,\sigma_1,\sigma_3)^{2
ightarrow 2}$ amplitudes inside

Much more cumbersome

Cheaper, looking at I=0 final states (same $\rho\pi$ intermediate state, but less contractions graphs)

If we reduce m_π even further, for some cases, infinite volume formalism takes over systematic uncertainties

First, one has to perform "many" fits to data to see the amplitude spread

If we reduce m_π even further, for some cases, infinite volume formalism takes over systematic uncertainties

First, one has to perform "many" fits to data to see the amplitude spread

At this point, amplitude systematic spreads can be as large as over $10\, imes\,$ the statistical uncertainties

If we reduce m_π even further, for some cases, infinite volume formalism takes over systematic uncertainties

First, one has to perform "many" fits to data to see the amplitude spread

At this point, amplitude systematic spreads can be as large as over $10 \times$ the statistical uncertainties

We need a better infinite volume formalism than "naive" amplitude fitting

If we reduce m_π even further, for some cases, infinite volume formalism takes over systematic uncertainties

First, one has to perform "many" fits to data to see the amplitude spread

At this point, amplitude systematic spreads can be as large as over $10\, imes\,$ the statistical uncertainties

We need a better infinite volume formalism than "naive" amplitude fitting

Implement a full dispersive approach

$$t_{\ell}^{I}(s) \to \tilde{t}_{\ell}^{I}(s) = \tau_{\ell}^{I}(s) + \sum_{I',\ell'} \int_{4m_{\pi}^{2}}^{\infty} ds' K_{\ell\ell'}^{II'}(s',s) \operatorname{Im} t_{\ell'}^{I'}(s')$$

Example, LASS (SLAC) experiments in the 70s and 80s

Dispersion relations for $\pi\pi$

To succeed, input and out must be similar in value

To succeed, input and out must be similar in value
$$t_\ell^I(s) \to \tilde{t}_\ell^I(s) = \tau_\ell^I(s) + \sum_{I',\ell'} \int_{4m_\pi^2}^\infty ds' K_{\ell\ell'}^{II'}(s',s) \operatorname{Im} t_{\ell'}^{I'}(s')$$
 Output Bad agreement, we discard these amplitudes
$$0.5$$
 Oreat agreement, we select these amplitudes
$$0.64(13)$$

$$0.64(13)$$

$$0.64(13)$$

$$0.64(13)$$

$$0.64(13)$$

$$0.64(13)$$

$$0.64(13)$$

$$0.64(13)$$

$$0.64(13)$$

$$0.64(13)$$

$$0.64(13)$$

$$0.64(13)$$

$$0.64(13)$$

$$0.64(13)$$

$$0.64(13)$$

$$0.64(13)$$

$$0.64(13)$$

$$0.64(13)$$

$$0.64(13)$$

$$0.64(13)$$

$$0.64(13)$$

$$0.64(13)$$

$$0.64(13)$$

$$0.64(13)$$

$$0.64(13)$$

$$0.64(13)$$

$$0.64(13)$$

$$0.64(13)$$

$$0.64(13)$$

$$0.64(13)$$

$$0.64(13)$$

$$0.64(13)$$

$$0.64(13)$$

$$0.64(13)$$

$$0.64(13)$$

$$0.64(13)$$

$$0.64(13)$$

$$0.64(13)$$

$$0.64(13)$$

$$0.64(13)$$

$$0.64(13)$$

$$0.64(13)$$

$$0.64(13)$$

$$0.64(13)$$

$$0.64(13)$$

$$0.64(13)$$

$$0.64(13)$$

$$0.64(13)$$

$$0.64(13)$$

$$0.64(13)$$

$$0.64(13)$$

$$0.64(13)$$

$$0.64(13)$$

$$0.64(13)$$

$$0.64(13)$$

$$0.64(13)$$

$$0.64(13)$$

$$0.64(13)$$

$$0.64(13)$$

$$0.64(13)$$

$$0.64(13)$$

$$0.64(13)$$

$$0.64(1$$

Dispersion relations for $\pi\pi$

All final selected poles are compatible with one another, spread is reduced

To succeed, input and out must be similar in value

$$t_{\ell}^{I}(s) \rightarrow \tilde{t}_{\ell}^{I}(s) = \tau_{\ell}^{I}(s) + \sum_{I',\ell'} \int_{4m_{\pi}^{2}}^{\infty} ds' K_{\ell\ell'}^{II'}\left(s',s\right) \operatorname{Im} t_{\ell'}^{I'}\left(s'\right)$$
Output
Input

Bad agreement, we discard these amplitudes

1 We are requesting computing time (most of it) to go to lower m_π

The lower m_{π} , the more relevant this approach becomes

Dispersion relations for $\pi\pi$

-800

All final selected poles are compatible with one another, spread is reduced

To succeed, input and out must be similar in value

$$t_{\ell}^{I}(s) \to \tilde{t}_{\ell}^{I}(s) = \tau_{\ell}^{I}(s) + \sum_{I',\ell'} \int_{4m_{\pi}^{2}}^{\infty} ds' K_{\ell\ell'}^{II'}(s',s) \operatorname{Im} t_{\ell'}^{I'}(s')$$

Bad agreement, we discard these

- We are requesting computing time (most of it) to go to lower m_π The lower m_π , the more relevant this approach becomes
- 4 Also requesting time for EM current analyses

Other projects

4 EM properties of hadrons

Present: The K radiative transition*

Future: The $a_0(980)$, a coupled-channel analysis on photo production

Learning about it's flavor composition
Learning about it's size

4 Form factors of hadrons

After first explorations on non-resonant systems

Probing unstable (and stable) hadrons

3 Meson-baryon projects are ongoing

Several challenges: operator construction, very expensive wick contractions, multi-body thresholds

Simpler, two-body analyses

Harder "Roper" resonance

Proposal summary

1 Determine the spectrum of ordinary and non-ordinary hadrons

 $\pi \rightarrow \begin{array}{c} \pi \\ \pi \end{array}$

Ready to compute exotic reactions at higher m_{π} Pushing lower m_{π} calculations for meson-meson scattering processes

2 Develop and implement multi-body decay formalisms to the extraction of resonances

Technology ready for 3π systems with intermediate resonances Getting closer to 3b baryonic systems!

3 Kick start our meson-baryon program

First explorations for Δ resonances are underway The Roper resonance will also be extracted, in the longer future

4 Continue our EM analyses

Working on photo production processes for coupled-channels Working on elastic form factors of scattering processes

