Semileptonic B-decays with a vector final state

Andrew Lytle (FNAL-MILC collaboration) University of Illinois @ Urbana-Champaign

> 04.19.24 USQCD All Hands Meeting Zoom@MIT

- Semileptonic decays are a rich source of information for determining CKM matrix elements.
- Lattice data a critical source of input for testing the CKM paradigm.

- Overall aim: Precision (~ 1%) determination of a range of B_(s) (and D_(s)) semileptonic form factors, of direct relevance for current and upcoming experimental programs.
- Here we discuss our work extending this program to decays with vector final states (specifically the processes $B_{(s)} \rightarrow D^*_{(s)}$).
- Support/enhance physics of $B \to D^*$ with FNAL heavy quarks on asqtad (and hisq) sea. 2105.14019

- Intro & Motivation
- FNAL/MILC all-HISQ semileptonic decays
 - Calculation framework
 - ▶ Update on results w/ pseudoscalar final state
- Progress with vector final states
- Summary

Carleton DeTar Aida El-Khadra Elvira Gámiz Steve Gottlieb William Jay Andreas Kronfeld Jack Laiho Jim Simone Alejandro Vaquero Treatment of c and especially b quarks challenging in lattice simulation due to lattice artifacts which grow as $(am_h)^n$

- May use an effective theory framework to handle the *b* quark.
 - ▶ Fermilab method, RHQ, OK, NRQCD
 - ▶ Pros: Solves problem w/ am_h artifacts.
 - ▶ Cons: Requires matching, can still have *ap* artifacts.
- Also possible to use relativistic fermion provided a is sufficiently small $am_c \ll 1$, $am_b < 1$.
 - Use improved actions e.g. $\mathcal{O}(a^2) \to \mathcal{O}(\alpha_s a^2)$
 - Pros: Absolutely normalised current, straightforward continuum extrap.
 - Cons: Numerically expensive, extrapolate $m_h \to m_b$.

allhisq simulations

- Here we simulate *all* quarks with the HISQ action.
- Unified treatment for wide range of $B_{(s)}$ (and $D_{(s)}$) to pseudoscalar transitions

$$\blacktriangleright B_{(s)} \to D_{(s)}^{(*)}$$

$$\blacktriangleright \ B_{(s)} \to K$$

►
$$B \to \pi$$

- Ensembles with (HISQ) sea quarks down to physical at each lattice spacing.
- Enables correlated studies of ff *ratios*.

See Lattice 2023 proceeding for more details. 2403.03959

- HISQ fermion action.
 - Discretization errors begin at $\mathcal{O}(\alpha_s a^2)$.
 - Designed for simulating heavy quarks (m_c and higher at current lattice spacings).
- Symanzik-improved gauge action, takes into account $\mathcal{O}(N_f \alpha_s a^2)$ effects of HISQ quarks in sea. [0812.0503]
- Multiple lattice spacings down to $\sim 0.042 \pmod{0.03}$ fm.
- Effects of u/d, s, and c quarks in the sea.
- Multiple light-quark input parameters down to physical pion mass.
 - ► Chiral fits.
 - ► Reduce statistical errors.

MILC ensemble parameters

1712.09262

all
HISQ \boldsymbol{b} updates

2212.12648

- Use a heavy valence mass h as a proxy for the b quark.
- Work at a range of m_h , with $am_c < am_h \lesssim 1$ on each ensemble. On sufficiently fine ensembles, m_h is near to m_b (e.g. m_b at $am_h \approx 0.65$ on a = 0.03 fm).
- Map out physical dependence on m_h , remove discretisation effects $\sim (am_h)^{2n}$ using information from several ensembles. Extrapolate results $a^2 \rightarrow 0, m_h \rightarrow m_b$.

Basic fit parameterizing M_H dependence and heavy quark discretization.

$$f_0(q_{\max}^2)[M_H, am_h] = \sum_{ij} c_{ij} \left(\frac{1}{M_H}\right)^i \left(am_h\right)^{2j}$$

Good precision obtained (~ 0.5%) at M_{B_s} .

 $B_s \rightarrow D_s$: $f_0(q^2)$

- Good precision out to p = 400
- Rightmost points on figure have $m_h = m_b$

Build from chiral forms used in D analysis.

$$f_{0,\parallel,\perp}(E) = \frac{c_0}{E + \Delta} (1 + \dots + c_H \chi_{H_s} + \dots)$$
$$\Delta = \frac{M_{D^*}^2 - M_{D_s}^2 - M_K^2}{2M_{D_s}}, \qquad \chi_{H_s} = \frac{\Lambda_{\text{HQET}}}{M_{H_s}} - \frac{\Lambda_{\text{HQET}}}{M_{D_s}^{\text{PDG}}}$$

Generalize to incorparate HQET expansion:

$$c_0 \to c_0 + c_1 \frac{\Lambda_{\text{HQET}}}{M_{H_s}} + \cdots, \quad \Delta \to \frac{M_{D^*}^2 - M_{D_s}^2 - M_K^2}{2M_{H_s}} \text{ (1st order)}$$
$$\chi_{H_s} = \frac{\Lambda_{\text{HQET}}}{M_{H_s}} - \frac{\Lambda_{\text{HQET}}}{M_{H_s}^{\text{"phys"}}}$$

Here building off D_s chiral analysis, working out towards B_s .

- Data at 2–3 m_c , 3 lattice spacings, 3 $m_{l,\text{sea}}$ values
- Note 0.057 fm has $m_h \approx 2.2, 3.3 m_c$
- Reasonable $\chi^2/dof =$ 0.92, 1.79, 0.75 for $f_0, f_{\parallel}, f_{\perp}$

Started computing tensor Z-factors for (one-link) tensor currents. (Also relevant for $P \rightarrow V$ tensor currents.)

- Use tensor decay constant $f_{J/\psi}^{T,\text{SMOM}}(\mu)$ as fiducial.
- $Z_{\text{SMOM}}^{\gamma_{\mu}\gamma_{\nu}\otimes\gamma_{\mu}\gamma_{\nu}}(\mu)$ (local tensor) determined in 2008.02024.
- $Z'_T = Z_T \sqrt{\frac{a_0 E'_0}{a'_0 E_0}}$, where a_0, E_0 are ground state amplitude/energy of the J/ψ from local and one-link tensor operators.

Analysis by Abhishek Samlodia (Syracuse)

$P \rightarrow V$ updates

• Pioneering FNAL-MILC calculation beyond zero-recoil using FNAL b and c quarks.

Figs. courtesy A. Vaquero

• FNAL-HISQ analysis in progress (Vaquero).

$B \to D^*$ comparisons

Lattice refs:

- JLQCD 2306.05657
- HPQCD 2304.03137
- FNAL/MILC 2105.14019

Extending allhisq to vector final states

Structurally, calculation is similar to $P \to P$ – need to modify spin-taste at source/sink/current.

Decay	$\mathcal{O}_{H_{(s)}}$	$\mathcal{O}_{H'}$	\mathcal{O}_J	Matrix element		
$P \rightarrow P$	$\gamma_5\otimes\gamma_5$	$\gamma_5\otimes\gamma_5$	$\gamma_i \otimes 1$	$\langle H' V_i H_{(s)}\rangle$		
$P \to P$	$\gamma_0\gamma_5\otimes\gamma_0\gamma_5$	$\gamma_5\otimes\gamma_5$	$\gamma_0\otimes\gamma_0$	$\langle H' V_4 H_{(s)}\rangle$		
$P \rightarrow V$	$\gamma_0\gamma_5\otimes\gamma_1\gamma_3$	$\gamma_1\otimes\gamma_1$	$\gamma_3\otimes\gamma_3$	$\langle H' V_3 H_{(s)}\rangle$		
$P \rightarrow V$	$\gamma_5\otimes\gamma_5$	$\gamma_1 \otimes 1$	$\gamma_5\otimes\gamma_5$	$\langle H' A_0 H_{(s)}\rangle$		
$P \to V$	$\gamma_5\otimes\gamma_5$	$\gamma_3\otimes\gamma_3$	$\gamma_3\gamma_5\otimes\gamma_3\gamma_5$	$\langle H' A_1 H_{(s)}\rangle$		
$P \rightarrow V$	$\gamma_5\otimes\gamma_5$	$\gamma_1\otimes\gamma_1$	$\gamma_1\gamma_5\otimes\gamma_1\gamma_5$	$\langle H' A_2 H_{(s)}\rangle$		

Normalize vector (axial vector) current using PCVC (PCAC).

Current year running update

- 2023 allocation cycle: Awarded 3.8M Sky-core-hours on lq. \sim 300 confs on 0.06fm-0.2m_s ensemble.
- April 18: 103% used (+1M Sky-core-hour jeopardy boost). Over 400 confs/data generated.
- Preliminary analysis on 326 confs. Expect to achieve 500 confs/data by end of allocation cycle.
- Tested run scripts on 1q2_gpu. Ready for production here.

For next year's proposed running, we would like to extend data to $0.09 \text{fm}-0.1 m_s \text{ (lq1_cpu)}$, and $0.09 \text{fm}-0.2 m_s \text{ (lq2_gpu)} \rightarrow$ First look at discretization and sea-quark mass effects.

Look at the $D^*_{(s)}$

 D^*

Figures courtesy of Akhil Chauhan (UIUC)

• Semileptonic decays are crucial sources of information for fundamental physics, e.g. $|V_{ub}|$ and $|V_{cb}|$. Lattice results needed to support experimental physics programs at LHCb and Belle II.

▶ Understand inclusive/exclusive discrepancies.

- Pure SM predictions for R-ratios.
- The FNAL-MILC allHISQ-*b* program aims to produce high quality form factor data for a range of phenomenologically important channels.
- Extending these calculations to vector final states, to obtain $B_{(s)} \to D^*_{(s)}$ form factors over the full kinematic range.

Thank you!

$$\partial_{\mu}A_{\mu}^{\rm cons} = (m_h + m_l)P$$

Applied to zero-momentum two-point correlators,

$$Z_{A^0}M'_H\langle 0|A^0|H'\rangle = (m_h + m_l)\langle 0|P|H\rangle \,,$$

Here A^0 has spin-taste $\gamma^5 \gamma^0 \otimes \gamma^5 \gamma^0$, P has spin-taste $\gamma_5 \otimes \gamma_5$. We use that $Z_{A^0} = Z_{A^i}$ up to polynomial discretization effects.

- Three correlators needed to extract three tensor form factors T_1 , T_2 , T_3 .
- One-link current insertions can be used with same initial/final state interpolating operators to obtain vector and axial-vector form factors.

Decay	$\mathcal{O}_{H_{(s)}}$	$\mathcal{O}_{H'}$	\mathcal{O}_J	Matrix element
$P \rightarrow V$	$\gamma_0\gamma_5\otimes\gamma_1\gamma_3$	$\gamma_3\otimes\gamma_3$	$\gamma_1\gamma_2\otimes\gamma_1$	$\langle H' T1, T2 H_{(s)}\rangle$
$P \to V$	$\gamma_0\gamma_5\otimes\gamma_1\gamma_3$	$\gamma_1\otimes\gamma_1$	$\gamma_2\gamma_3\otimes\gamma_3$	$\langle H' T_1, T_2, T_3 H_{(s)}\rangle$
$P \rightarrow V$	$\gamma_5\otimes\gamma_5$	$\gamma_3\otimes\gamma_3$	$\gamma_0\gamma_1\otimes\gamma_3\gamma_5$	$\langle H' T_1, T_2 H_{(s)}\rangle$