DarkLight 50 MeV Physics Program

Ethan Cline & Jan C. Bernauer

Center for Frontiers in Nuclear Science Stony Brook University Stony Brook,NY Laboratory for Nuclear Science Massachusetts Institute of Technology Cambridge, MA

DarkLight Collaboration Meeting July 11, 2024

Open ended discussion on what the future physics plan looks like.

The primary goal is to perform a 17 MeV search for a new force carrier.

- 50 MeV is stand-in for whatever the final beam energy is
- All of the non-A' physics that can be done at 30 MeV can be extended to 50 MeV
 - Keep in mind both spectrometers will nominally be at 20°

- 50 MeV is stand-in for whatever the final beam energy is
- All of the non-A' physics that can be done at 30 MeV can be extended to 50 MeV
 - Keep in mind both spectrometers will nominally be at 20°
- What would be new for 50 MeV?

- 50 MeV is stand-in for whatever the final beam energy is
- All of the non-A' physics that can be done at 30 MeV can be extended to 50 MeV
 - Keep in mind both spectrometers will nominally be at 20°
- What would be new for 50 MeV?
 - New targets?

- 50 MeV is stand-in for whatever the final beam energy is
- All of the non-A' physics that can be done at 30 MeV can be extended to 50 MeV
 - Keep in mind both spectrometers will nominally be at 20°
- What would be new for 50 MeV?
 - New targets?
 - Same beam dump and therefore reduced beam current?

- 50 MeV is stand-in for whatever the final beam energy is
- All of the non-A' physics that can be done at 30 MeV can be extended to 50 MeV
 - Keep in mind both spectrometers will nominally be at 20°
- What would be new for 50 MeV?
 - New targets?
 - Same beam dump and therefore reduced beam current?
 - Movable spectrometers? (!?) (The current 20° spec probably can't move)

Radius measurements?

At each energy, we measure two angles. Could do double ratio:

 $\frac{d\sigma(36^\circ, 50 \mathrm{MeV})/d\sigma(36^\circ, 10 \mathrm{MeV})}{d\sigma(20^\circ, 50 \mathrm{MeV})/d\sigma(20^\circ, 10 \mathrm{MeV})}$

- Inner ratio kills acceptance, efficiency
- Outer ratio kills normalization, gives us relative slope
- Could do for
 - Carbon
 - H, via CH + C measurement
 - Others? Maybe He with jet target?
- N.B.: If we could measure backward angles: G_M !

We would need to use both target chambers!

Reach/sensitivity

Very open-ended discussion here, hard to know what is realistic at this point.

• Moveable spectrometers seem to be the key point of discussion

• Turning the key to a broader physics program

• What is the future of DarkLight?

