DarkLight non-A' Requirements

Ethan Cline & Jan C. Bernauer

Center for Frontiers in Nuclear Science Stony Brook University Stony Brook,NY Laboratory for Nuclear Science Massachusetts Institute of Technology Cambridge, MA

DarkLight Collaboration Meeting July 12, 2024

Non-A' Physics

Assuming we are only considering the 30 MeV program

- Radiative Møller scattering
- Bethe-Heitler Process
- Radiative Carbon Scattering
- Carbon FF
- Anything else?

With minimal changes to the 30 MeV program

 $\bullet \ \mathsf{C} + \mathsf{CH} \to \mathsf{proton} \ \mathsf{FF}$

Non-A' Physics

- Need both spectrometers and at least one spectrometer fully instrumented
 - 2 GEMs
 - Trigger scintillators
- Need low beam current, 1-10 μA
- Beam energy scanning capabilities, 10-30 MeV

Radiative Møller Scattering

- Requires fully instrumented 20° spectrometer + DAQ
- Energy likely too low for 36° spectrometer
- Discussed in several collaboration meetings already
- Well-understood measurement
- Generators in hand

Møller scattered energy rate versus scattered angle. 30 MeV line on top, 10 MeV line on bottom.

Radiative Carbon Scattering

- Can be performed on either/both spectrometers
- Requires full instrumented spectrometer + DAQ
- Use the beam current requirements for commissioning
- Beam energy scanning capabilities, 10-30 MeV
- Measure inelastic Hoyle state

Cross section simulation using A1 eC generator. Figure from Story.

0.010

0.000

0.005

0.015

0.020

0.030

A E [GeV]

0.025

Bethe-Heitler Pair Production

- e^+e^- pairs produced from eC scattering
- Should be \approx flat spectrum as a function of energy
- Can probe the spectrum with momentum by tuning magnetic fields
- This is a major experimental background

H. Bethe,W. Heitler, 1934. Cross section of positron production against fraction of incoming electron kinetic energy

Carbon FF

- Have already discussed calibrating experiment with C elastic line
- Elastic scattering \rightarrow radius
- Desire both spectrometers fully instrumented + DAQ
- Benefit: Completely parasitic to calibration measurements, well studied nucleus, can be used as a benchmark
- Have generator from A1 group courtesy of Miha
- $Q_{\mathrm{max}}^2 pprox 3 imes 10^{-4} (\mathrm{GeV}^2)
 ightarrow \mathsf{FF} pprox 1$

Minimal Extension to Planned Experiment

- $\bullet \ \mathsf{C}{+}\mathsf{CH} \ \mathsf{Target} \rightarrow \mathsf{proton} \ \mathsf{FF}$
 - Requires a CH target, would mean replacing either C or Ta on target ladder
 - For a smoother measurement, would want to replace Ta so transition between targets is smooth
 - Obvious difficulty with commissioning
 - Run at several beam energies with measurements on both spectrometers
 - Difficulty in subtracting background to high precision, haven't studied count rates at all

Summary

Measurement	Target	Spectrometer	Beam Current	Beam Energy
Møller Scattering	C	(-)20°	1-5 μA	10-30 MeV
Rad. C Scat.	C	(-)20 $^\circ$ or (-)36 $^\circ$	1-5 <i>µ</i> A	10-30 MeV
Bethe-Heitler	C	$(\pm)20^\circ$ or $(\pm)36^\circ$	1-5 <i>µ</i> A	10-30 MeV
Carbon FF	C	(-)20 $^\circ$ and (-)36 $^\circ$	1-5 <i>µ</i> A	10-30 MeV
Proton FF	C+CH	(-)20 $^\circ$ and (-)36 $^\circ$	1-5 µA	10-30 MeV

Summary of non-A' physics objectives and equipment needed. Note all on carbon, all low current, all energy scanning. Proton FF requires a change to the target ladder to have the CH target.

These non-A' measurements are our commissioning measurements or are parasitic to them!