GEM and Trigger Simulation (and digitization \& analysis) Status

Win Lin
Stony Brook University
DarkLight Collaboration Meeting
10/07/2024

Stony Brook University
@
RIRIEL

Overview

- All codes are within the cooker framework
- g4DL simulation
- Digitization
- Analysis
- Both GEM and Trigger are implemented

Output Structure－GEM

Digitization Output Branch

－${ }^{2}$ ROOT Files

\square RunInfo；1

盆EventInfo
－MEM＿0
APV channel value for GEMO
data
fUniqueID
fBits
道GEM＿1
这GEM＿2
火GEM＿3

Reconstruction Output Branch

－ROOT Files

GEM Coordinate
－＂8．84DL＿Jul4＿100k＿reco．root
\square … Runinfo；1
－－aGEM＿0；1
－GGEM＿1；1
－\quad GEM＿2；1
－\quad GGEM＿3；1

気EventIno
家 LumiGEMhits

x xlerr
（ylerr

Each branch is a vector per event with the GEM \＃，x coordinate and y coordinate of the hit，respectively

－Cooker command examples：
－Digitization：cooker recipes／GEMini／gemini＿digi．xml＜input Geant4 root file＞＜output file name＞
－Reconstruction：cooker recipes／GEMini／gemini．xml＜output from digi＞＜output file name＞

- In simulation, for each event, the hit position and energy of each step are recoded
- In digitization, the hit position is projected to the channels in each axis. Readout value is calculated and converted to apv values.

GEM Coordinate

Example output

- Simulation with validation mode (central momentum for each arm, random angle within acceptance)

Example GEM Hit Map

Example output

- Simulation with validation mode (central momentum for each arm, random angle within acceptance)

Example output

- Simulation with validation mode (central momentum for each arm, random angle within acceptance)

Summary for GEM

- Digitization and reconstruction are currently implemented with the proper geometry
- Some refinement to be done:
- Noise should be tuned such that the y direction has proper resolution
- Reason for the bias in the x direction needs to be determined
- Resolution may suffer due to the angle?
- Need to collect pedestal values and gains once we can perform the measurement with the physical GEMs

Code Structure - Trigger

Code Structure - Trigger

- Code structure:

TrigScint

Parameters are set via Init/TrigScint.xml and stored to each paddle before startup:
load_sc_calibration: set resolution, time alignment etc.
load_tdc_calibration: set time range of trigger events within trigger window

- Cooker command examples:
- Digitization: cooker recipes/TrigScint/trs_digit.xml <input Geant4 root file> <output file name>
- Reconstruction: cooker recipes/TrigScint/trs.xml <output from digi> <output file name>

Trigger Simulation

- Detector is added, but frame has not been added yet

Trigger Simulation

- Detector is added, but frame has not been added yet
- Detector positions are chosen such that the beam particles hit roughly the centers

Validation mode with 30 MeV beam

Trigger Simulation

- Detector is added, but frame has not been added yet
- Detector positions are chosen such that the beam particles hit roughly the centers
- For each event:
- Total energy deposit in the scintillator is recorded
- Hit time of beginning of the first step is recorded
- Hit position is randomized between the beginning and ending of the first step: p1 + G4UniformRand0 * (p2 - p1)

Trigger Digitization

- Detector is added, but frame has not been added yet
- Detector positions are chosen such that the beam particles hit
roughly the centers
- For each event:
- Total energy deposit in the scintillator is recorded
- Hit time of beginning of the first step is recorded
- Hit position is randomized between the beginning and ending of the first step: p1 + G4UniformRand() * (p2 - p1)

- dt = hit distance from end of bar / effective speed of light (need to be calibrated)
- Signal attenuation $=e^{-a x\left(1+b x+c \cdot x^{2}\right)}$, where $\mathrm{x}=$ hit distance from end of bar -0.5 ; a, b and c are parameters that can be tuned (model used at MUSE)
$U=U_{0} \cdot \exp \left(-\frac{1}{2}\left(\frac{\ln (\mathrm{t} / \tau)}{\sigma}\right)^{2}\right)$
$U_{0}=f \cdot E_{\text {hit }}$
f : conversion factor related to SiPM efficiency
τ, σ : parameters that describe the shape of signal

Jetter Sören et al 2012 Chinese Phys. C 36733

- Function is defined, with two parameters that can be adjusted for each channel
- For each event, the amplitude $\left(U_{0}\right)$ is calculated from the attenuated signal
- To find t_{0} and t_{f}, the code will solve the equation for the times when signal cross threshold (LD mode)

$U=U_{0} \cdot \exp \left(-\frac{1}{2}\left(\frac{\ln (\mathrm{t} / \tau)}{\sigma}\right)^{2}\right)$
$U_{0}=f \cdot E_{\text {hit }}$
f : conversion factor related to SiPM efficiency
τ, σ : parameters that describe the shape of signal
- Function is defined, with two parameters that can be adjusted for each channel
- For each event, the amplitude $\left(U_{0}\right)$ is calculated from the attenuated signal
- To find t_{0} and t_{f}, the code will solve the equation for the times when signal cross threshold (LD mode)
- Once t_{0} and t_{f} are found, $t_{0}+\mathrm{dt}$ and $t_{f}+\mathrm{dt}$ with added resolution are recorded for leading and trailing edge time

Cosmic Data
w1ns

Simulation, TrE03DS (with beam)

Current parameter used:

- Timing resolution added: 300 ps on each SiPM
- Threshold = 20 mV
- $\mathrm{f}=70 \mathrm{mv} / \mathrm{MeV}, \tau=23, \sigma=0.5$

Trigger Analysis

- Only work for simulation right now. To analyse data we need mapping of electronics
- Simple timing and time over threshold plots are added
- Time over threshold will be used for time-walk correction
- Hitmaps and time difference plots are adde
- More are coming, will also look at correlation with GEM

Summary for Trigger

- Simulation, digitization and simple analysis are implemented
- To do:
- Add detector frame to simulation
- Fine tune digitization, compare simulated data with beam data
- Acceptance study by varying the vertical position of the detector

Summary

GEM:

- Digitization and reconstruction are currently implemented with the proper geometry
- Some refinement to be done:
- Noise should be tuned such that the y direction has proper resolution
- Reason for the bias in the x direction needs to be determined
- Resolution may suffer due to the angle?
- Need to collect pedestal values and gains once we can perform the measurement with the physical GEMs

Trigger:

- Simulation, digitization and simple analysis are implemented
- To do:
- Add detector frame to simulation
- Fine tune digitization, compare simulated data with beam data

Thank you! :)
Questions? Comments?

- Acceptance study by varying the vertical position of the detector

