GEM and Trigger Simulation (and digitization & analysis) Status

Win Lin Stony Brook University

DarkLight Collaboration Meeting 10/07/2024

Overview

C)

Code Structure - GEM

Output Structure - GEM

- Cooker command examples:
 - Digitization: cooker recipes/GEMini/gemini_digi.xml <input Geant4 root file> <output file name>
 - Reconstruction: cooker recipes/GEMini/gemini.xml <output from digi> <output file name>

<u>Reconstruction Output Branch</u>

g4DL_Jul4_100k_reco.root

-]RunInfo;1
- GEM_0;1
- GEM_1;1
- GEM_2;1
- GEM_3;1
- Iumigemcooked;1
- EventInfo
- 🗄 📈 LumiGEMhits

Each branch is a vector per event with the GEM #, x coordinate and y coordinate of the hit, respectively

GEM Coordinate

GEM Simulation and Digitization

- In simulation, for each event, the hit position and energy of each step are recoded
- In digitization, the hit position is projected to the channels in each axis. Readout value is calculated and converted to apv values.

GEM Coordinate

Example output

- Simulation with validation mode (central momentum for each arm, random angle within acceptance)

Example GEM Hit Map

Example output

- Simulation with validation mode (central momentum for each arm, random angle within acceptance)

Example output

- Simulation with validation mode (central momentum for each arm, random angle within acceptance)

<u>X Resolution (N = 100k)</u>

Summary for GEM

- Digitization and reconstruction are currently implemented with the proper geometry
- Some refinement to be done:
 - Noise should be tuned such that the y direction has proper resolution
 - Reason for the bias in the x direction needs to be determined
 - Resolution may suffer due to the angle?
- Need to collect pedestal values and gains once we can perform the measurement with the physical GEMs

Code Structure - Trigger

- Code structure:

Parameters are set via Init/TrigScint.xml and stored to each paddle before startup:

load_sc_calibration: set resolution, time alignment etc.

load_tdc_calibration: set time range of trigger events within trigger window

- Cooker command examples:
 - Digitization: cooker recipes/TrigScint/trs_digit.xml <input Geant4 root file> <output file name>
 - Reconstruction: cooker recipes/TrigScint/trs.xml <output from digi> <output file name>

nput Geant4 root file> <output file name>
Itput from digi> <output file name>

11

Trigger Simulation

- Detector is added, but frame has not been added yet

Trigger Simulation

- Detector is added, but frame has not been added yet
- roughly the centers

Trigger Simulation

- Detector is added, but frame has not been added yet
- Detector positions are chosen such that the beam particles hit roughly the centers
- For each event:
 - Total energy deposit in the scintillator is recorded
 - Hit time of beginning of the first step is recorded
 - Hit position is randomized between the beginning and ending of the first step: p1 + G4UniformRand() * (p2 - p1)

Trigger Digitization

- Detector is added, but frame has not been added yet
- Detector positions are chosen such that the beam particles hit roughly the centers
- For each event:
 - Total energy deposit in the scintillator is recorded
 - Hit time of beginning of the first step is recorded
 - Hit position is randomized between the beginning and ending of the first step: p1 + G4UniformRand() * (p2 - p1)

- dt = hit distance from end of bar / effective speed of light (need to be calibrated)
- Signal attenuation = $e^{-ax(1+bx+c\cdot x^2)}$, where x = hit distance from end of bar - 0.5; a, b and c are parameters that can be tuned (model used at MUSE)

Trigger Digitization

$$U = U_0 \cdot \exp\left(-\frac{1}{2}\left(\frac{\ln(t/\tau)}{\sigma}\right)^2\right)$$

$$U_0 = f \cdot E_{\text{hit}}$$

f: conversion factor related to SiPM efficiency

 τ, σ : parameters that describe the shape of signal

Jetter Sören et al 2012 Chinese Phys. C 36 733

- Function is defined, with two parameters that can be adjusted for each channel
- For each event, the amplitude (U_0) is calculated from the attenuated signal
- To find t_0 and t_f , the code will solve the equation for the times when signal cross threshold (LD mode)

Trigger Digitization

$$U = U_0 \cdot \exp\left(-\frac{1}{2}\left(\frac{\ln(t/\tau)}{\sigma}\right)^2\right)$$

$$U_0 = f \cdot E_{\text{hit}}$$

f: conversion factor related to SiPM efficiency

 $\tau,\,\sigma$: parameters that describe the shape of signal

Jetter Sören et al 2012 Chinese Phys. C 36 733

- Function is defined, with two parameters that can be adjusted for each channel
- For each event, the amplitude (U_0) is calculated from the attenuated signal
- To find t_0 and t_f , the code will solve the equation for the times when signal cross threshold (LD mode)
- Once t_0 and t_f are found, t_0 +dt and t_f + dt with added resolution are recorded for leading and trailing edge time

Timing comparison

Cosmic Data

Simulation, TrE03DS (with beam)

Current parameter used:

- Timing resolution added: 300 ps on each SiPM
- Threshold = 20 mV
- f = 70 mv / MeV, au = 23, σ = 0.5

Trigger Analysis

- Only work for simulation right now. To analyse data we need mapping of electronics
- Simple timing and time over threshold plots are added
- Time over threshold will be used for time-walk correction
- Hitmaps and time difference plots are adde
- More are coming, will also look at correlation with GEM

Summary for Trigger

- Simulation, digitization and simple analysis are implemented
- To do:
 - Add detector frame to simulation
 - Fine tune digitization, compare simulated data with beam data
 - Acceptance study by varying the vertical position of the detector

Summary

GEM:

- Digitization and reconstruction are currently implemented with the proper geometry
- Some refinement to be done:
 - Noise should be tuned such that the y direction has proper resolution
 - Reason for the bias in the x direction needs to be determined
 - Resolution may suffer due to the angle?
- Need to collect pedestal values and gains once we can perform the measurement with the physical GEMs

Trigger:

- Simulation, digitization and simple analysis are implemented
- **–** To do:
 - Add detector frame to simulation
 - Fine tune digitization, compare simulated data with beam data
 - Acceptance study by varying the vertical position of the detector

Thank you! :) **Questions?** Comments?

