MIT Bates for ultra-light silicon pixel detectors

Gian Michele Innocenti (MIT)
MIT Heavy-ion Group

DOE review of Bates Laboratory
MIT, July 09-10, 2024

https://pixelphilab.mit.edu

Next generation silicon detectors

MIT PixEL φ : a new laboratory to exploit a new cutting-edge silicon pixel technology:

→ Ultra-light ("massless") Bendable Monolithic Active Pixels

· large sensors with "stitching" techniques

• "bendable" when thinned below ~20-40 μm

The Silicon Vertex Tracker (SVT) for ePIC@EIC is the most advanced application of stitched MAPS sensors for large-area wide-acceptance detectors

SVT for ePIC@EIC

SVT is paving the way for future large-area application of this new technology

→ unique technological challanges in terms of sensor R&D, cooling, mechanical design and integration

SVT disks SVT inner barrel SVT disks (IB)

Large-area stitched-MAPS sensors

PixEL φ at Bates: prospects beyond SVT

On-sensor AI for MAPS with hls4ml:

• noise-tagging and data reduction on MAPS for future HEP experiments (focus on e+e- for FCC and eA for EIC)

Applications in atomic physics:

e.g. detection of low-energy electrons for cold-atom physics

Medical imaging:

online calibration of proton/ion beams for ion therapy

MAPS-based tracker for the FCC at CERN

MIT PixELφ: SVT contributions

Major contributions to the sensor design and testing

- Developing a brand new high-frequency testing strategy for large-area sensors
 - → MIT is leading the testing, characterization working group of the SVT collaboration
- Design and optimize the SVT readout strategy for service reduction

The sensor and testing activities are currently carried out at CERN to maximize the synergies with CERN MAPS experts:

→ Our plan is to move and expand the testing lab to Bates over the course of the next 2-3 years

PixEL φ at Bates: planned contributions to SVT mechanics

- · Simulation studies to characterize the mechanical properties of the SVT IB layers (ongoing)
- implement SVT geometry in ANSYS, heat-dissipation studies
- test the impact of vibrations in the presence of air flows at different speeds
- define the specifications of a wind tunnel to test the IB mechanical design, cooling, ...
- · Design of the inner-barrel geometry, support structure, and cooling
- MIT is in charge of the design and construction of the Layer2

Layer2: the largest-R layer of bent MAPS sensor ever designed and constructed

 Design and construction of a wind-tunnel setup to test the cooling, dissipation and mechanical properties of the SVT

PixEL φ at Bates: status of R&D activities to SVT mechanics

Implemented the current mechanical design for the SVT in SolidWorks

- · Develop a fluido-dynamic simulation to model the air-based cooling of the SVT
- Currently performing a thermal study to characterize the cooling performance in presence of a realistic heat dissipation

- → preliminary studies are currently supported with in-kind Bates resources (Tricia Smith, Jim Kelsey)
- → SVT relies on Bates for the design and construction of the SVT L2!

PixEL ϕ at Bates: our vision

- Bates as a centre of excellence for the R&D, design, construction and assembly of large-area sensor detectors:
- Short/middle term plan: leading role in the design and construction of the SVT third layer
- Longer term: future large-area detectors, medical applications, ...

Requirements:

- Cutting-edge equipments for mechanics and electronics (bending, assembly, gluing..)
- Wind tunnels for large-area sensors
- Electronic equipment for testing (wafer probe machines, DAQ setups), bonding machine
- Spaces (clean room with vacuum systems)

Timescale

- Next 6 months:
 - clean room to be refurnished
 - purchase of the bending tools
- Next year
 - development of a wind tunnel
 - purchase of mechanical equipment (e.g. Mitutoyo machine w/ alignment vacuum tools)
- Next two/three years:
 - → Move the now CERN-based test laboratory to MIT/Bates
 - → Equip the Bates-based lab for the assembly of the SVT inner tracking layers

BACKUP

MIT PixEL φ : a Silicon Pixel Lab for ELementary physics at MIT

A new laboratory built at MIT to exploit a new cutting-edge silicon pixel technology:

→ Ultra-light ("massless") Bendable Monolithic Active Pixels

large sensors with "stitching" techniques

• "bendable" when thinned below ~20-40 μm

MIT PixEL φ : a Silicon Pixel Lab for ELementary physics at MIT

→ Next generation "stitched" MAPS technology for high-accuracy detectors for high-energy and nuclear physics

Ongoing projects

Silicon Vertex Tracker
(SVT) for the ePIC
experiment at the
Electron-Ion Collider

MVTX for the sPHENIX experiment

Artificial intelligence with FPGA for MAPS detectors

→ CERN-based MIT laboratory

Silicon detectors in the MIT heavy-ion group

→ Almost 30 years of experience in pixels detector design, construction, commissioning

PHOBOS experiment at RHIC AC-coupled, single-sided, silicon pad for tracking, vertexing, and multiplicity

1990

CMS tracker ("hybrid pixels") commissioning pixel and strip detectors for heavy-ion runs

Monolithic Active Vertex Tracker (MVTX) for sPHENIX with ALICE ITS2 technology

- mechanical design, cooling, and integration
- module characterization
- DCS design, installation and commissioning

SVT at the ePIC: timescale and synergies with the ITS3 project

