An analysis of HERA data with subMIT Frank Taylor

HERA

MIT 23 July 2024

Lived the 'good' life at the top of the 'food chain'

- I analyzed the H1 & ZEUS combined NC DIS data posted on HEPData
 - https://www.hepdata.net/record/ins1377206
- Used ROOT to determine the Longitudinal Structure Function F_L
 - Minimum χ^2 fits using MINUIT
 - Single variable numerical integrations
 - Various numerical tests & 'tabletop' calculations
- My paper posted on arXiv
 - "A determination of F_L at x=Q²/s with HERA data"
 - <u>https://arxiv.org/abs/2406.19970</u>

Electron-Proton Scattering – DNA of MITLNS

- For NC DIS (inclusive electron) the basic measurements are
 - Scattered electron energy E_e'
 - Scattered electron angle θ
- Determines
 - Four-momentum transfer to quark Q
 - The quark momentum fraction x
 - The inelasticity y
 - Reduced cross section σ_r

$$\sigma_r(x,Q^2,s) = \frac{d^2\sigma(e^{\pm}p)}{dQ^2dx} \left[\frac{Q^4}{2\pi\alpha_e^2}\frac{x}{Y_+}\right] = F_2 - \left(\frac{y^2}{1+(1-y)^2}\right)F_L = 2xF_1 + \left(\frac{2(1-y)}{1+(1-y)^2}\right)F_L$$

7/23/2024

A puzzling feature of HERA data

- At very low x the cross section is smaller than expectation it turns over
 - Does not agree with NNLO calculations based on global fits to data Why?

The longitudinal SF F_L controls σ_r turn-over at small x

- The Physics
 - Virtual photon off the mass shell \rightarrow both transverse and longitudinal polarization
 - Longitudinal photons can not directly interact with spin ½ partons => σ_r becomes smaller at low x
- The reduction of cross section at $x_{min} = Q^2/s$ (y=1) for fixed Q² in SM is:

$$\lim_{y \to 1} \left[\sigma_r(x, Q^2, s) \right] = F_2(Q^2/s, Q^2) - F_L(Q^2/s, Q^2) = 2xF_1(Q^2/s, Q^2)$$

• Therefore, at x_{min} a measurement of F_2 and $2xF_1$ determines $F_L = F_2 - 2xF_1$

VERY SIMPLE – but results in F_2 and F_L only along the line $x_{min} = Q^2/s$

Determine $F_2(x_{min}) \& 2xF_1(x_{min})$ from one distribution

- $d^2\sigma_r/dxdQ^2$ at x_{min} can not be measured directly
 - The electron backscatters $\theta = \pi$ into incoming beam
 - Have to determine cross section components at this point numerically
- To determine values at x_{min} perform two fits on one distribution of form:

$$\ln\left[F_2 - \frac{y^2}{Y_+}F_L\right] = P_n\left[\ln\left(\ln\left(1/x\right)\right)\right]$$

- Polynomial order n = 2 or 3
- $y \le 0.3$ for F_2 and $y \ge 0.3$ for F_2 $F_L = 2xF_1$

Method for $Q^2 = 35 (GeV/c)^2$

The HERA F_2 and F_2 - F_L at x_{min}

- This is the first time that F_2 and F_2 - F_L have been measured at $x_{min} = Q^2/s$
 - Structure functions at x_{min} are sensitive to heavy quark thresholds
 - Observe the strange quarkantiquark threshold for Vs = 318 GeV data
- The difference between black and red points is $F_L at x_{min}$

The strange quark threshold in $F_2(Q^2/s)$

Size of anomaly jump 1.2 ± 0.07

$$\frac{F_2(Q^2 > 1 (GeV/c)^2)}{F_2(Q^2 < 1 (GeV/c)^2)} \approx \frac{\sum_{i=1}^{6} e_i^2}{\sum_{i=1}^{4} e_i^2} = 1.2$$
Assuming:

$$x\overline{u}(x) = x\overline{d}(x) = xs(x) = x\overline{s}(x)$$

F_L has 2 parts: quark-antiquark (F₂) and gluon (xG)

At x_{min} the virtual photon is transversely polarized implying that gluon component is strongly suppressed by theory. But F_L is larger than expected. In fact, F_L is consistent with an enhanced (4.7±0.5) F_2 part with gluon part = 0. The turn-over at low x is due to enhanced F_2 part.

7/23/2024

All HERA data together $225 \le \sqrt{s} \le 318$ GeV

7/23/2024

Conclusions – F_L in transverse polarization limit

- At $x_{min} \gamma^*$ is transversely polarized thus only interacts with spin ½ partons.
- The following are consistent
 - Observe strange quark threshold in F₂ at Q ≈ 1 GeV/c in √s = 318 GeV data
 - The ratio 2xF₁/F₂ is consistent with suppressed gluons – enhanced quarks
 - F_L (Q > 1.4 GeV/c) appears to be consistent with an enhanced quark term by 4.7 ± 0.5 not SM gluon term (0)
- Data favors the Dipole Model
 - Another interaction channel in NC DIS

Dipole interaction

J. Bartels, K.Golec-Biernat and H. Kowalski, Phys.Rev. D66, (2002) 19

Theory of F_L in parton SM

- F_L has an F₂ (quark-antiquark) and a dominant xG (gluon) component
 - F_L is proportional to the strong coupling constant $\alpha_s(Q^2)$

$$F_{L}(x,Q^{2}) = \frac{\alpha_{s}(Q^{2})}{\pi} \left[\frac{4}{3} \int_{x}^{1} \frac{dy}{y} \left(\frac{x}{y} \right)^{2} F_{2}(y,Q^{2}) + 2\sum_{x} e_{q}^{2} \int_{x}^{1} \frac{dy}{y} \left(\frac{x}{y} \right)^{2} \left(1 - \frac{x}{y} \right) y G(y,Q^{2}) \right]$$

- Three integrals evaluated numerically with many checks
 - Used CTEQ10 PDF and parameterization of Abt, et al.
 - Tuned xG to agree with high Q^2 data, checked F_2 with data
 - Found that each of the three integrands are power laws in 1/x for small x
 - Knowing the powers of the power laws can estimate the integrals by hand!

Check of F_L integration by power law

7/23/2024

F_L measured by H1 and ZEUS

- The analysis performed by Rosenbluth method
 - Used the y-dependence for fixed x and Q² to allow determinations of both F₂ and F_L
 - Analysis included longitudinally polarized virtual photons
 - Different from my determination of F_L in the transverse polarization limit at x_{min}

Fitting corrections

Systematic Corrections for F₂

Systematic Corrections for 2xF₁

7/23/2024

Ratio showing xG contribution disfavored

7/23/2024

