Rare Decay Measurements and Searches at CMS

Zhangqier Wang

Oct, 8th 2024 DOE Visit

- Introduction
- Rare Decay Analyses
 - Higgs Rare Decay
 - $B_{(s)} \rightarrow \mu \mu$ Measurements
 - $D \rightarrow \mu\mu$ Search
- Extended Projects
- Conclusion

Introduction

- Rare decay measurement is one of the most promising ways to probe the new physics
 - Rare in the SM prediction, sensitive to New Physics effects
 - Covers higher energy scale compared to the direct search
- The rare decay measurements include Higgs physics and flavor physics at MIT group

 ¹
 _b
 ₋₋₋₋
 _z
 - Higgs rare decay
 - Coupling to light quarks
 - Flavor physics rare decay
 - Flavor-changing neutral current
- Research in rare decay also extends into other projects

Rare Decay Projects

• Leadership in various rare decay measurements

- MIT plays a key role in CMS flavor physics (BPH) and Higgs physics (HIG) group
 - BPH L2 convener: Dmytro Kovalskyi; rare decay L3 convener: Zhangqier Wang
 - HIG to leptons and rare decay L3 convener: Mariarosaria D'Alfonso

Higgs Rare Decay

Main force:

Mariarosaria D'Alfonso Kyungseop (Kevin) Yoon

Higgs Rare Decays

- Higgs coupling to light quarks (u, d, s)
 - Suppressed coupling and large QCD background hamper direct searches
 - Class of decays suggested H->Mγ, where M is the light meson
 - Flavor-conserving probes
 - $H \rightarrow \rho^0 \gamma$: Higgs coupling to u,d-quark
 - $H \rightarrow \phi \gamma$: Higgs coupling to s-quark
 - Flavor-changing probe
 - $H \rightarrow K^{*0}\gamma$: flavor-changing s and d quarks via weak interaction

Production and Final States

7

- Final states
 - High energy photon
 - Light meson decays to two hadrons
 - ditrack invariant mass is constrained to be close to meson mass

• Higgs production categories: different selections for each categories

Higgs Mass Projections

- Dedicated photon + jet with tau-ID trigger deployed in 2018 for the ggH production.
 - Tau-like jet contains ditrack system, similar to light meson
 - Photon pT> 35 GeV, tau-like jet pT > 35 GeV
 - Largely boosted the sensitivity
- Higgs mass reconstructed from photon + ditrack system

Higgs Rare Decays Result

Channel	Coupling	SM prediction	Previous best measurement	This analysis
$H \to \rho^0 \gamma$	u, d	$(2.31 \pm 0.11) \times 10^{-6}$	$10.4 imes 10^{-4}$	$3.74 imes10^{-4}$
$H \to \phi \gamma$	S	$(1.68 \pm 0.11) \times 10^{-6}$	$5.0 imes 10^{-4}$	$2.97\times\mathbf{10^{-4}}$
$H\to K^{*0}\gamma$	d,s (flavor-changing)	1.0×10^{-19}	2.2×10^{-4}	$2.99\times\mathbf{10^{-4}}$

- No significant excess above the background expectations is observed
- Limits for $\rho^0\gamma$ and $\phi\gamma$ channels are the most stringent experimental limits to date
- New projects in Higgs rare decay: $H \rightarrow c\bar{c} + J/\psi$

Higgs Rare Decays Result

Channel	Coupling	SM prediction	Previou	<mark>s best</mark> Visitin
			measar	
$H \to \rho^0 \gamma$	u, d	$(2.31 \pm 0.11) \times 10^{-6}$	$10.4 \times$	
$H \to \phi \gamma$	S	$(1.68 \pm 0.11) \times 10^{-6}$	5.0 ×	June
$H\to K^{*0}\gamma$	d,s (flavor-changing)	1.0×10^{-19}	2.2 ×	

- No significant excess above the background expectation
- Limits for $\rho^0\gamma$ and $\phi\gamma$ channels are the most stringent (date
- New projects in Higgs rare decay: H->D*+ γ , H \rightarrow cc+ J/ ψ

Visiting student (ETH)

This analysis

Martí Pedemonte i Bernat

Flavor Physics Rare Decays

Main force:

Rare Decays in Flavor Physics

- Rare decay in the flavor physics involves muons with much lower pT compared to general analysis.
- MIT has a long history in the muon activities
 - Dmytro was the convener of the CMS Muon POG 2017-2019
 - Re-write the muon reconstruction algorithm for improvements
- Stay at the frontier of the muon related development
 - New muon identification
 - New muon triggers

- We encountered important backgrounds from fake muons in rare decay searches in flavor physics
- Identifying soft muons is crucial for many physics programs at CMS
 - Fake muon backgrounds may bias the signal extraction
- Developed a MVA identification for the Run 3 soft muons
- Much better performance compared to Run 2 ID for 2022-2023 data
- The analysis is approved, entering CWR now

Inclusive Dimuon Trigger

- Inclusive dimuon trigger developed using **parking** technique.
 - Expands the CMS flavor program beyond its original design.
 - Development driven by MIT group
- It covers mass range below 8.5 GeV, which will lead to many new publications.
 - Including the $D \rightarrow \mu\mu$ search

$B_{(s)} \rightarrow \mu \mu$ Measurements

Why $B_{(s)} \rightarrow \mu \mu$?

- B(s)->μμ : meson composed of b-quark + d(s)quark
- Rare decay in Standard Model
 - Strongly helicity suppressed
 - CKM suppression
- Standard Model prediction
 - $B_s \to \mu\mu$: (3.66 ± 0.14) × 10⁻⁹
 - $B^0 \to \mu\mu$: $(1.03 \pm 0.05) \times 10^{-10}$
- Unique rare b→sℓℓ process
 - Sensitive to New Physics effects
 - Only $B_{s,H}$ meson decays into dimuon
 - Shares dominant contributions with $B \rightarrow K(*) \ell \ell$
 - Where discrepancies from the SM are observed

Helicity Suppressed

Rare B Decay Anomalies

- Multiple discrepancies are observed in rare B decays
 - 2-3σ anomalies in branching ratios and angular observables
- Description with the Wilson coefficients C9 and C10 of the vector and pseudovector operators O9 and O10 in the effective 4-fermion interaction
 - Only O10 operator contributes to $B(s) \rightarrow \mu \mu$
 - B(s)-> $\mu\mu$ had about 2.6 σ tension from SM prediction.

$B_{(s)} \rightarrow \mu \mu$ Analysis Strategy

- Using full CMS Run 2 data, we aim to measure
 - $B_s \rightarrow \mu\mu$ branching fraction and lifetime
 - Search for $B^0 \rightarrow \mu\mu$

• The signal branching fractions are normalized using $B \rightarrow J/\psi K$ and $B_s \rightarrow J/\psi \phi$

$$\begin{split} \mathcal{B}(B_s^0 \to \mu^+ \mu^-) &= \mathcal{B}(B^+ \to J/\psi K^+) \times \frac{N_{B_s^0 \to \mu^+ \mu^-}}{N_{B^+ \to J/\psi K^+}} \times \frac{\epsilon_{B^+ \to J/\psi K^+}}{\epsilon_{B_s^0 \to \mu^+ \mu^-}} \times \frac{f_u}{f_s} \end{split} \begin{array}{l} \text{External B production} \\ \text{fraction ratio} \\ \text{or } \left\{ = \mathcal{B}(B_s^0 \to J/\psi \phi) \times \frac{N_{B_s^0 \to \mu^+ \mu^-}}{N_{B_s^0 \to J/\psi \phi}} \times \frac{\epsilon_{B_s^0 \to J/\psi \phi}}{\epsilon_{B_s^0 \to \mu^+ \mu^-}} \right\} \\ \mathcal{B}(B^0 \to \mu^+ \mu^-) &= \mathcal{B}(B^+ \to J/\psi K^+) \times \frac{N_{B^0 \to \mu^+ \mu^-}}{N_{B^+ \to J/\psi K^+}} \times \frac{\epsilon_{B^+ \to J/\psi K^+}}{\epsilon_{B^0 \to \mu^+ \mu^-}} \times \frac{f_u}{f_d} \end{aligned} = 1 \end{split}$$

- Allow the first order cancellation of most systematics
- $B \rightarrow J/\psi K$ normalization is the primary result, $B_s \rightarrow J/\psi \phi$ is the alternative normalization

$B_{(s)} \rightarrow \mu \mu$ Analysis Strategy

- Using full CMS Run 2 data, we aim to measure
 - $B_s \rightarrow \mu \mu$ branching fraction and lifetime
 - Search for $B^0 \rightarrow \mu\mu$

=1

• The signal branching fractions are normalized using $B \rightarrow J/\psi K$ and $B_s \rightarrow J/\psi \phi$

$\mathcal{B}(B^0_s \to \mu^+$	Starting the fs/fu measurement using Run 3 data with the new muon trigger		
$\mathcal{B}(B^0 \to \mu^+$	 Aim to extend lower Pt and better precision 		

Visiting student from CIEMAT working on it c

External B production fraction ratio

- Allow the first order cancellation of most systematics
- $B \rightarrow J/\psi K$ normalization is the primary result, $B_s \rightarrow J/\psi \phi$ is the alternative normalization

Unbinned ML Fit

- 2D fit for branching fraction
 - Mass, mass uncertainty

 $P(m_{\mu\mu},\sigma_{m_{\mu\mu}}) = P(m_{\mu\mu};\sigma_{m_{\mu\mu}})P(\sigma_{m_{\mu\mu}}/m_{\mu\mu})$

- 3D fit for lifetime
 - Mass, decay time, decay time uncertainty

 $P(m_{\mu\mu}, t, \sigma_t) = P(m_{\mu\mu})P(t|\sigma_t)P(\sigma_t)$

$B_s \rightarrow \mu \mu$ BF Results

$$\mathcal{B}(\mathrm{B}^{0}_{\mathrm{s}} \to \mu^{+}\mu^{-}) = \left[3.83^{+0.38}_{-0.36} \text{ (stat)}^{+0.19}_{-0.16} \text{ (syst)}^{+0.14}_{-0.13} (f_{\mathrm{s}}/f_{\mathrm{u}})\right] \times 10^{-9}$$

Alternative normalization ($B_s^0 \rightarrow J/\psi \phi$) $\mathcal{B}(B_s^0 \rightarrow \mu^+\mu^-) = \left[3.95^{+0.39}_{-0.37} \text{ (stat)} {}^{+0.27}_{-0.22} \text{ (syst)} {}^{+0.21}_{-0.19} \text{ (BF)}\right] \times 10^{-9}$

$B^0 \rightarrow \mu\mu$ BF Comparison

$$\mathcal{B}(\mathrm{B}^{0}
ightarrow \mu^{+}\mu^{-}) = \left[0.37^{+0.75}_{-0.67} \text{ (stat)} \, {}^{+0.08}_{-0.09} \text{ (syst)}
ight] imes 10^{-10}$$

- The main challenge with $B^0 \rightarrow \mu\mu$ is the combinatorial background.
- It will require more data and analysis improvements to reach discovery level.
- CLs result: $\mathfrak{B}(B^0 \to \mu\mu) < 1.9 \times 10^{-10}$ (95% CL)

$$au = 1.83 \, {}^{+0.23}_{-0.20}\, ({
m stat}) \, {}^{+0.04}_{-0.04}\, ({
m syst}) \ {
m ps}$$

 $\tau(B_{s,L}) = 1.429 \ ps$ $\tau(B_{s,H}) = 1.622 \ ps$ PDG2024

- Result Published in July 2023: <u>Phys. Lett. B 842 (2023) 137955</u>
- Relative uncertainty on BF(Bs $\rightarrow \mu\mu$) has been reduced from 23% to 11%.
 - The best single measurement to date, highly compatible with SM prediction
- The B(s)→µµ measurements indicate that the abnormally comes from vector leptonic coupling.

Staring Run 3 analysis: expect significant improvements, maybe first discovery of $B^0 \rightarrow \mu\mu$

$D \rightarrow \mu\mu$ Search

Rare Charm Decay

- Seach for $D^0 \rightarrow \mu\mu$ and measure its branching fraction
- The decay proceeds under charm sector FCNC, highly suppressed in SM
 - SM Prediction: BF($D^0 \rightarrow \mu\mu$) > $\sim 3 \times 10^{-13}$ (Long distance)
- Rare charm decays mediated by "c \rightarrow u" transition, which is less studied, comparing to "b \rightarrow s".
- It is an **unexplored area**.
 - Not discovered yet
 - Most stringent experimental search BF < 3.5 × 10⁻⁹ @95 CL (from LHCb),
 4 orders of magnitude to SM
- A better result is made possible by the new Run 3 inclusive dimuon trigger.

$D \rightarrow \mu \mu$ Analysis Strategy

- Data Used: 2022—2023 CMS Data
- Search for cascade decay: $D^{*+} \rightarrow D^0 \pi^+$, $D^0 \rightarrow \mu \mu$.
 - Two independent observables 2D Fit
 - **m**(**D**⁰): reconstructed D0 mass from dimuon
 - $\Delta \boldsymbol{m} = m(D^*) m(D^0)$
- Normalization method used

$$\mathcal{B}(\mathrm{D}^0 \to \mu^+ \mu^-) = \mathcal{B}(\mathrm{D}^0 \to \pi^+ \pi^-) \frac{N_{\mathrm{D}^0 \to \mu^+ \mu^-}}{N_{\mathrm{D}^0 \to \pi^+ \pi^-}} \frac{\varepsilon_{\mathrm{D}^0 \to \pi^+ \pi^-}}{\varepsilon_{\mathrm{D}^0 \to \mu^+ \mu^-}}$$

Signal channel $D^{*+} \rightarrow D^0 \pi^+, D^0 \rightarrow \mu \mu$ Final states: 2μ + soft pion Trigger: inclusive dimuon trigger Nominal normalization channel $D^{*+} \rightarrow D^0 \pi^+, D^0 \rightarrow \pi^+ \pi^-$ Final states: 2h+ soft pion Close kinematics with $D^0 \rightarrow \mu\mu$

• 2D UML fit to extract the yield from $D^0 \rightarrow \mu\mu$ and $D^0 \rightarrow \pi^+\pi^-$

$\mathcal{P}^0 \rightarrow \mu\mu$ Branching Fraction

$\mathcal{B}(\mathrm{D}^0 \rightarrow \mu^+\mu^-) < 2.6 \times 10^{-9}$ at 95% confidence level

- The likelihood distribution of $D^0 \rightarrow \mu\mu$
 - Central value $\mathcal{B}(D^0 \rightarrow \mu^+\mu^-) = (1.0 \pm 0.9) \times 10^{-9}$

- The **first publication** of the BF($D^0 \rightarrow \mu\mu$) by the CMS experiment
 - No significant excess was observed.
 - $BF < 2.6 \times 10^{-9}$ @ 95% CL, improved by 35% over the previous world's best measurement
 - Most stringent limit on charm sector FCNC
- First Run 3 result using the inclusive dimuon triggers (parking trigger)
 - Demonstrates the benefits of this trigger for flavor physics measurements
 - Show its potential to open up opportunities for a wide range of studies involving low-mass dimuons
- The analysis was a highlight in 2024 ICHEP
- It will soon be in CWR, expected to be published in a few months.

Extended Projects

- New states at the GeV scale are motivated from several perspectives.
 - Vector portal interaction in thermal dark matter models

• MIT group has conducted Run 2 search using scouting trigger, leading to the most sensitive probe in such region.

- With the new **inclusive dimuon trigger** in Run 3, we expect to achieve a much better performance in the dark photon search.
- Preliminary study has done on 2022-2023 data, which already gives 20% improvements
- Starting the Run 3 analysis using 2022-2024 data.
- Expected to double the sensitivity.

Conclusion

- MIT group has led and provided major contributions to various rare decay projects.
 - Run 2 Higgs rare decays sets most stringent limits in H->Mγ decays
 - Run 2 $B \rightarrow \mu\mu$ analysis achieves the most precise single measurements in BF and lifetime
 - Run 3 $D \rightarrow \mu\mu$ search yields the most sensitivity constrains on the charm sector FCNC.
- Key contribution to the Run 3 inclusive dimuon trigger that expends CMS physics programs involved with low pT muons.
- Developed Run 3 soft muon ID to benefit flavor physics programs.
- Several new analyses on going
 - Dark photon search using new inclusive dimuon trigger
 - Run 2 + Run 3 Higgs rare decay in more decay channels
 - $B \rightarrow \mu\mu$ analysis using Run 3 data

Back up

Triggers for Higgs Rare Decay

- High-level trigger
 - Three types of triggers used for different production mode.

Tau-like trigger

Photon + jets with τ -ID \rightarrow ggH, low- p_T^{γ} VBF

- Photon $p_T^{\gamma} > 35 \text{ GeV} +$ tau-like jet $p_T^{j} > 35 \text{ GeV}.$
- Tau-leg similar to isolated di-track system.
- Luminosity: 39.50 fb⁻¹ (2018).

VBF-dedicated trigger

$\begin{array}{l} \text{High-} p_T^{\gamma} \text{ photon + VBF-like jets} \\ \rightarrow \text{ high-} p_T^{\gamma} \text{ VBF} \end{array}$

- Photon $p_T^{\gamma} > 75 \text{ GeV} + \text{di-jet}$ with large M_{ij} and $\Delta \eta_{ij}$.
- Active partly during 2016-17 and fully during 2018.
- Luminosities: 28.2 fb⁻¹ (2016), 7.7 fb⁻¹ (2017), 60 fb⁻¹ (2018).

Leptonic trigger

Double or single lepton $\rightarrow VH$

- Single or double-muon (electron) lowest p_T thresholds vary depending on year.
- To complement selection, triggers requiring a lepton and a photon is also used.
- Luminosity: 138 fb⁻¹ (2018).

Events Selection

Photon

	ggH	High- p_T^γ VBF	$\textbf{Low-}p_{T}^{\gamma} \textbf{ VBF}$	VH
p_T^{γ} [GeV]	> 38	> 75	$38 < p_T^{\gamma} < 75$	>40
$ \eta^{\gamma} $	< 2.1	< 1.4	< 2.1	< 2.5
γ-ID signal eff.	80%	90%	80%	90%

Ditrack system

Track selection

- Originate from PV.
- Pass "high purity" criteria.

Meson definition

- Pair of oppositely charged tracks.
- $p_T > 5$ GeV, $|\eta| < 2.5$.
- At least one track $p_T > 20$ GeV.

Invariant mass

- Di-track system invariant **mass** windows and sidebands (next slide).
- K[±]π[∓] system: if both combinations exist, then the one closest to m_{K*0} is selected.
- Reject events where $m_{\rm KK}$ consistent with $m_{\pi\pi}/m_{\rm K\pi}$ and have higher p_T , vice versa.

Additional isolation requirements are applied afterwards

Higgs Rare Decay Selection

Common selections					
	2 "high-purity" tracks, opposite charge				
M selection	$ \eta^{\text{trk}} < 2.5, p_{\text{T}}^{\text{trk}1} > 20 \text{ GeV}, p_{\text{T}}^{\text{trk}2} > 5 \text{ GeV}, \eta^{\text{M}} < 2.1$				
	$0.62 < m_{\pi\pi} < 0.92 \text{ GeV} (\rho^0)$ /	$0.62 < m_{\pi\pi} < 0.92 \text{ GeV} (\rho^0) / 1.008 < m_{KK} < 1.032 \text{ GeV} (\phi) / 0.84 < m_{K\pi} < 0.94 \text{ GeV} (K^{*0})$			
Category	ggH	VBF high- p_{T}^{γ}	VBF low- $p_{\rm T}^{\gamma}$	VH	
Integrated luminosity	39.5fb^{-1}	86.9fb^{-1}	39.5fb^{-1}	138fb^{-1}	
Trigger	Photon +	High- $p_{\rm T}$ photon +	Photon +	Double or single	
	jet with $ au$ -ID	VBF-like jets	jet with $ au$ -ID	lepton	
$p_{\rm T}^{\gamma}$ [GeV]	> 38	> 75	> 38 and < 75	> 40	
$ \eta^{\gamma} $	< 2.5	< 1.4	< 2.1	< 2.5	
γ -ID (signal eff.)	80%	90%	80%	90%	
$p_{\rm T}^{\rm M}$ [GeV]	> 38	> 30	> 38	> 40	
$I^{ch}(M)$	> 0.9	> 0.9	> 0.9	> 0.8	
$I^{neu}(M)$	> 0.8	$ \wedge \neq $	\	—	
Event	Meson candidate	2 jets with	2 jets with	1 selected and	
tagging	within a jet with	$p_{\mathrm{T}}^{\mathrm{j}} > 40~\mathrm{GeV}$	$p_{\mathrm{T}}^{\mathrm{j}} > 30/20~\mathrm{GeV}$	isolated e/μ	
	$p_{\rm T}^{\rm j} > 40$ GeV, tracks	$m_{\rm ii} > 400 { m GeV}$	$m_{ii} > 300 \text{ GeV}$	or 2 selected e/μ	
	with $\Delta R < 0.07$	$ \Delta \eta_{ij} > 3$	$ \Delta \eta_{ij} > 3$	compatible with Z mass	
Veto	Lepton veto, VBF-like jets veto	Lepton veto	Lepton veto	—	
		BDT catego	ries		
cat0	BDT> 0.55	BDT> 0.7	BDT> 0.7	_	
cat1	-0.4 < BDT < 0.55	-0.6 < BDT < 0.7	-0.6 < BDT < 0.7	—	
		2			

Bmm Preselections

Selection	$\mathbf{R}^0 \rightarrow \mu^+ \mu^-$	$B^+ \rightarrow I/_{1b}K^+$	$\mathbf{R}^0 \rightarrow \mathbf{I}/\mu\phi$
Selection	$D_{\rm s} \rightarrow \mu \ \mu$	$D \rightarrow J/\psi R$	$D_{\rm s} \rightarrow J/\psi\psi$
B candidate mass [GeV]	[4.90,5.90]	[4.90 <i>,</i> 5.90]	[4.90,5.90]
Blinding window [GeV]	[5.15,5.50]		
$p_{\mathrm{T}\mu}$ [GeV]	> 4	>4	>4
$ \eta_{\mu} $	< 1.4	< 1.4	< 1.4
3D SV displacement significance	> 6	>4	>4
$p_{\mathrm{T}\mu\mu}$ [GeV]	> 5	> 7	> 7
$\mu\mu$ SV probability	> 0.025	> 0.1	> 0.1
J/ψ candidate mass [GeV]		[2.9,3.3]	[2.9,3.3]
Kaon $p_{\rm T}$ [GeV]		>1	>1
Mass-constrained fit probability		> 0.025	> 0.025
2D $\mu\mu$ pointing angle [rad]		< 0.4	< 0.4
ϕ candidate mass [GeV]			[1.01, 1.03]

- Selection requirements are as loose as possible
 - Provide more data to MultiVariate Analysis (MVA)
 - Limited by trigger requirements
- Normalization channel selection is optimized to match kinematics of signal
- Employ "data blinding" technique to avoid unconscious bias

Multivariate Analysis (MVA)

• Backgrounds have larger pointing angle, low-quality secondary vertex (SV) fit, worse isolation.

- Main observables to distinguish the signal
 - Pointing angles: α_{3D} , α_{2D}
 - Impact parameter and its significance
 - $\delta_{3D}, \delta_{3D}/\sigma(\delta_{3D})$
 - Flight length significance: $l_{3D}/\sigma(l_{3D})$
 - Isolation of B candidate and muons
 - Dimuon vertex quality
- New MVA used to select the B meson and suppress the backgrounds, labelled as MVA_b.
 - XGBoost package (advanced gradient boosting algorithm).
 - Training sample:
 - Signal: $B_{(s)} \rightarrow \mu \mu$ MC
 - Background: data sidebands [4.9, 5.1], [5.5, 5.9] GeV

$B^+ \rightarrow J/\psi K^+$ Yield Fits

- $B^+ \rightarrow J/\psi K^+$ normalization yield are directly used for signal normalization.
 - Nominal model is built using analytical functions
 - $B^+ \rightarrow J/\psi K^+$: CB+2 Gaussian with same mean
 - Alternative is using non-parametric signal model convolved with a resolution model
- The difference between the two estimates is taken as systematics (1%)

2D Contour Plot

SM Value:

$$\mathfrak{B}(B_s \rightarrow \mu\mu) = 3.66 \times 10^{-9}$$

 $\mathfrak{B}(B^0 \rightarrow \mu\mu) = 1.03 \times 10^{-10}$

CMS measurement

- $\mathfrak{B}(B_s \to \mu\mu) = 3.83 \times 10^{-9}$
- $\mathfrak{B}(B^0 \rightarrow \mu\mu) = 0.37 \times 10^{-10}$

The SM value within one sigma

Lifetime Measurement

Signal region [5.28, 5.48] GeV

- In the absence of CP violation only the heavy B_s state decays into dimuon
 - Different composition of states may be allowed by New Physics.
- Use UML fit of the $m_{\mu\mu}$, decay time t, decay time uncertainty to measure $B_s \rightarrow \mu\mu$ lifetime.
 - $P = P(m)P(t|\sigma_t)P(\sigma_t)$
- Perform the same UML fit on the $B^+ \rightarrow J/\psi K^+$
 - With constructed signal-like MVA_b
 - To derive the correction and validate the procedure

$B^0 \rightarrow \mu\mu$ BF Results

- The main challenge with $B^0 \rightarrow \mu\mu$ is the combinatorial background
- Observed (expected) significance is 0.5 (1.71) σ
 - It will require more data and analysis improvements to reach discovery level.
- CLs result:
 - $\mathfrak{B}(B^0 \to \mu\mu) < 1.9 \times 10^{-10}$ (95% CL)

Signal Normalization

- Normalization Channel: $D^0 \rightarrow \pi^+\pi^-$ decay, which has close kinematics with $D^0 \rightarrow \mu\mu$.
- Find the normalization yields, N(normalization).
 - 2-D fit in ZeroBias Dataset, find the fitting yields.
 - N(normalization) = N(ZeroBias Fitting) x ZeroBias Prescaling
- Main Equation:

$$\mathcal{B}(\mathsf{D}^0 \to \mu^+ \mu^-) = \mathcal{B}(\mathsf{D}^0 \to \pi^+ \pi^-) \frac{N_{\mathsf{D}^0 \to \mu^+ \mu^-}}{N_{\mathsf{D}^0 \to \pi^+ \pi^-}} \frac{\varepsilon_{\mathsf{D}^0 \to \pi^+ \pi^-}}{\varepsilon_{\mathsf{D}^0 \to \mu^+ \mu^-}}$$

- $\varepsilon = \varepsilon_{Acc.} \times \varepsilon_{Reco.}$ is total efficiency from the MC.
- N_{mode} is the normalization of the corresponding decay mode of data fit.
- It allows the first order cancellation of most systematics
- Also used to normalize peaking and semileptonic background.
- Alternative normalization channel $D^0 \rightarrow K^+\pi^-$ is used for cross-check
 - No obvious improvements from the statistical advantage from this channel

Dmm Candidate Selections

Preselection: reconstruction of $D^*(D^0 \to \mu\mu)$ and $D^*(D^0 \to \pi^+\pi^-)$ candidates

- Muon Selection
 - pT > 4, |η|<2.4
 - highPurity inner track
 - isLooseMuon
 - isTracker && isGlobal

- Pion/Kaon Selection
 - charged PFCandidate
 - pT > 4, |η|<2.4
 - highPurity inner track

Vertexing

- Soft pion compatible with PV
- PV is refitted with soft pion

Baseline selection

- Trigger:
 - HLT_DoubleMu4_3_LowMass for signal
 - HLT_ZeroBias for normalization
- $m(D^0) \in [1.81, 1.94]$ GeV
- ∆m ∈[0.14, 0.15] GeV
- Pointing angle $\alpha_{3D} < 0.1$
- D^0 vertex probability > 0.01
- D^* vertex probability > 0.1
- Flight length significance $l_{3D} / \sigma(l_{3D}) > 3$

Multivariate Analysis (MVA)

• Backgrounds have larger pointing angle, low-quality vertex fit. The pion is not as soft as the signal.

- Main observables to distinguish the signal
 - Pointing angles: α_{3D}
 - Flight length significance: $l_{3D}/\sigma(l_{3D})$
 - *D*⁰ vertex probability
 - Impact parameter of D^0 candidate
 - pT of soft pion, muons
 - *D*^{*}vertex probability
- New MVA used to select the D* meson and suppress the backgrounds, labelled as MVA_D.
 - XGBoost package (advanced gradient boosting algorithm).
 - Training sample:
 - Signal: $D^{*+} \rightarrow D^0 \pi^+$, $D^0 \rightarrow \mu \mu$ MC
 - Background: data sidebands $\Delta m \in [0.150, 0.155]$ GeV
- Optimized selection: MVA_D>0.74

Normalization UML Fit

- 2D Fit: $P(M_{\pi\pi}, \Delta M) = P(M_{\pi\pi}) \times P(\Delta M)$.
- Procedure
 - Use MC to extract fitting models
 - Shape correction extracted from Dimuon, Zerobias
 - Fit on ZeroBias to get the normalization
- Three major components
 - $D^* \rightarrow D^0 \pi$, $D^0 \rightarrow \pi \pi$
 - Peak structure in both dM and $m(\mu\mu)$
 - Combinatorial background
 - $D^* \rightarrow D^0 \pi$, $D^0 \rightarrow K \pi$
 - Larger peak in dM, left shifted peak in m($\mu\mu$)
 - The contribution from $D^0 \to K\pi/\pi\pi$ without D* is negligible
- Normalization result after MVA cut
 - N(D->ππ)=195 ± 17
 - prescaling = 1.255×10^{6}

