

Electroweak Precision Physics at CMS and the FCC Plans

Jan Eysermans October 8, 2024

Breaking the Standard Model

Standard model holds strong, but we know it's not the complete picture

to describe the universe

- So far no direct evidence of new physics at the LHC
- LHC will put (or not) limits on higher mass scales and beyond SM physics

After the Higgs discovery, the SM electroweak sector is overconstrained

- Direct measurements of each parameter with high precision allows to test the self-consistency of the SM
- Any deviations can be accounted for as new physics at higher energy scales than can be reached at the LHC

Establish precision physics programme for the next decades

- Vast amount of data will be delivered by the LHC leading to precise measurements *proof will be given today!*
- Looking at next colliders to go beyond the precision delivered by the LHC

The W boson mass

W boson mass predicted via SM relationships

- Based on inputs from precisely measured electroweak parameters
- Depends on higher order corrections Δr from top and Higgs

$$m_{\rm W}^2 \left(1 - \frac{m_W^2}{m_Z^2}\right) = \frac{\pi \alpha}{\sqrt{2}G_\mu} (\mathbf{1} + \Delta r)$$

- Uncertainty from electroweak fit amounts to $m_w = 80353 \pm 6 \text{ MeV}$
- Crucial to measure m_w with similar precision

Experimentally challenging to measure it

- Several measurements at the LEP and Tevatron experiments, ATLAS and LHCb
- Current combined experimental value m_w = 80369 ± 13 MeV
- Latest CDF measurement from 2022 m_w = 80434 ± 9 MeV
 - The most precise measurement
 - In significant tension with EWK prediction other experimental values

CMS W boson mass measurement to be delivered and shed light on the CDF ambiguity

Measurement of W mass at hadron colliders

Environment of hadron collider requires leptonic decays of the W boson

- Direct reconstruction of W \rightarrow qq difficult: overwhelming backgrounds and limited hadronic resolution
- Instead infer m_w from leptonic and/or transverse mass distributions
- Theoretical inputs and modeling is crucial: parton distribution functions (PDFs),
 W boson production and decay kinematics (perturbative and non-perturbative QCD)

Strategy of the W boson mass measurement at CMS

Used a well-studied dataset taken in 2016 corresponding to 16.8 fb⁻¹

- Over 100M selected muon W candidates $W \rightarrow \mu v$
- Accompanied by 4B fully simulated MC events

Key ingredients

- Use muon kinematics only (η, p_T) : precise calibration of the muon momentum scale
- Theoretical modeling: use state-of-the-art theoretical models and constrain in-situ by data
- W boson mass extracted by fitting a granular 3 dimensional space (η , p_T , q)
- Reserve Z data as an independent cross-check as much as possible

Muon momentum scale calibration

Plii

Accurate momentum calibration necessary to 10⁻⁴ level as $\delta m_w \sim \delta p_T$

- Calibration based on the inner tracking system, muon system only used for trigger and identification
- Requires accurate understanding of magnetic field, detector material and particle interaction model, alignment

$$\frac{\delta k}{k} = \mathbf{A} - \boldsymbol{\epsilon} k + q \mathbf{M} / k \qquad (k = 1/p_{\mathrm{T}})$$

Use advanced track refit and quarkonia resonances to correct

mismatches between data and simulation

- Rely on $J/\psi \rightarrow \mu\mu$ only, use the Z (and Y) resonance as validation
- Done in different regions of the detector (24 bins in η)

Extrapolation momentum range of J/ψ to Z based on parametric model

- Validated by extracting closure on the $Z \rightarrow \mu\mu$ events
- Scale statistical uncertainties of the calibration to cover for residual differences and possible biases

Validation of the muon momentum scale

Validation of muon momentum scale and uncertainties by fitting the dilepton mass spectrum

$$m_Z - m_Z^{\text{PDG}} = -2.2 \pm 4.8 \text{ MeV} = -2.2 \pm 1.0 \text{ (stat)} \pm 4.7 \text{ (syst)} \text{ MeV}$$

- Uncertainties fully dominated by muon momentum scale
- Cannot claim an independent Z mass measurement as the non closure is used in the uncertainty model

In-situ theoretical modeling

Theoretical modeling challenging at hadron colliders as it involves the parton distribution functions (PDF), perturbative and non-perturbative QCD and electroweak effects

- Typically to cope with large theoretical uncertainties as generally higher-order calculations are missing
- In previous measurements at hadron colliders (ATLAS, CDF) is to tune the theoretical modeling to the well known Z

Our approach is to let the data directly constrain the theory model

- Use state-of-the-art theory predictions as a starting point
- Well-defined uncertainties to distinguish theoretical variations from mass variations \rightarrow factorize different theory contributions
- \rightarrow Allows to use the Z as validation only
- \rightarrow Smaller impact on m_w thanks to the statistical power of the data

Modeling of the boson p_{τ}

Simulation using MiNNLOPS + Pythia 8 + Photos

- Next-to-next leading order in α_s
- Limited in logarithmic accuracy for W/Z p_T: correct σ^{U+L} using resummed
 SCETLIB prediction matched to fixed order DYTurbo prediction (N³LL)

Resummation – "Theory nuisance parameters"

- Corresponding to the terms appearing in the resummed calculation
- Well-defined correlation model across phase-space and between W and Z

Non-perturbative

- Account for transverse motion of partons in the protons (TMD PDF)
- Empirical model: Gaussian smearing of parton momenta large a-priori unc

Fixed-order

- Missing higher orders in α_s assessed through μ_r and μ_f variations

Parton distribution functions

PDF uncertainties also constrained in situ

- Strong constraining power from the η -dimension (48 bins)

Several PDF sets available with their own set of uncertainties and well-defined correlations

- Central values and uncertainties do not always agree with each other
- Scale prefit PDF uncertainties to ensure consistency between sets
- CT18Z chosen a priori as the nominal as it requires no inflation and gives the smallest uncertainty (after scaling)

PDF set	Scale factor	Impact in m_W (MeV)		
		Original $\sigma_{\rm PDF}$	Scaled $\sigma_{\rm PDF}$	
CT18Z	_	4.4		
CT18	—	4.6		
PDF4LHC21	_	4.1		
MSHT20	1.5	4.3	5.1	
MSHT20aN3LO	1.5	4.2	4.9	
NNPDF3.1	3.0	3.2	5.3	
NNPDF4.0	5.0	2.4	6.0	

Validation of theoretical modeling

Validation of the theory and uncertainty model on Z data

- 1. Direct fit to the the $p_T(\mu\mu)$ distribution shows excellent agreement with the data
- 2. "W-like" measurement by measuring the Z mass from single lepton kinematics (p_T , η , q)
 - Similar fit to extract the W boson mass
 - Result in good agreement with PDG value and quoted uncertainty
- 3. Directly test the theory model by comparing the unfolded $p_{T}(Z)$ spectrum with the direct fit

Confidence the W boson mass can be measured without tuning $p_{\tau}(W)$ using Z data

 $= -6 \pm 14 \mathrm{MeV}$

 $m_Z - m_Z^{PDG}$

Result of the CMS W boson mass measurement

All ingredients in place to measure the W boson mass

- Validated the theory model and muon momentum scale
- Data-driven non-prompt background from QCD multijet events, mostly heavy flavour

Result $m_w = 80360.2 \pm 9.9$ MeV, compatible with the Standard Model

\rightarrow Most precise measurement at the LHC

Our graduate student Tianyu Justin Yang successfully defended his thesis on the W mass measurement

Source of uncertainty	Nominal	
	in $m_{\rm Z}$	in $m_{\rm W}$
Muon momentum scale	5.6	4.8
Muon reco. efficiency	3.8	3.0
W and Z angular coeffs.	4.9	3.3
Higher-order EW	2.2	2.0
$p_{\rm T}^{\rm V}$ modeling	1.7	2.0
PDF	2.4	4.4
Nonprompt background	_	3.2
Integrated luminosity	0.3	0.1
MC sample size	2.5	1.5
Data sample size	6.9	2.4
Total uncertainty	13.5	9.9

Next steps in precision electroweak physics

Plii

Demonstrated precision physics can be done at the LHC

- Developed technical tools to cope with large datasets → opens up for analysis of even larger datasets (e.g. full Run2)

 $z_{/\gamma^*}$

- Very well understood dataset that can directly be used to measure other electroweak parameters

Measurement of the Z boson mass

- Current muon scale calibration amounts to 4.8 MeV
- First-step improvements in uncertainty model allows for a first Z mass measurement at hadron collider (~ 4–5 MeV)
- Next-step improvements in calibration to further calibrate to LEP level (~ 2 MeV)

Strong coupling constant a_s

- Gluon radiation before qq annihilation couples to α_{s} and changes transverse momentum of the Z boson
- Experimental $p_T(\mu\mu)$ distribution used to extract a_s
- Benefit from state-of-the-art theoretical implementations to decouple α_s from other variations (PDFs, non-perturbative)

Next steps in precision electroweak physics

Improved W boson mass measurement

- Use missing energy as a proxy of the undetected neutrino
- Allows to fully exploit the W boson kinematics
- Requires excellent calibration of the missing energy:
 - Extensive developments over the past years proven to calibrate the hadronic recoil below percent level
- Can further pin down the W boson mass uncertainty
- Simultaneously measure the W boson width, sensitivity in tails of transverse mass

Differential measurement $p_{\tau}(W)$

- Crucial to directly validate theoretical models on W data
- Analysis ongoing by measuring unfolded spectra using the hadronic recoil of the W boson using low pileup datasets taken in 2017
- Comparison with the the unfolded $p_T(W)$ from W mass

 W^+

LHC can and will offer competitive precision physics

- With a lot of data delivered by LHC (and HL) we can understand better our detector and improve experimental systematics
- Although some measurements will ultimately remain systematically limited \rightarrow no benefit of more data

An electron-positron machine is the next step towards high precision physics to measure precisely the Higgs and Top properties ("Higgs/Top factories")

FCC-ee meets these physics goals and extends the physics reach to the entire electroweak sector

- Increase the precision by order(s) of magnitude for Z/W physics
- Precisely study the Higgs and top quark properties
- Flavor factory from Z→bb/cc

Feasibility study report

Provide by 2025 conclusions on the technical and financial feasibility of the FCC integrated project, to be submitted/approved at the next European Strategy in 2026

Physics, Experiments and Detectors (PED) structure created in 2021 to help completion (part of) the FSR

- Establish physics programme and goals
- Assess physics performance and the detector requirements
- Also other aspects involved (computing and detector studies and development, machine-detector interface, ...)

MIT strongly involved in physics performance and computing with electroweak and Higgs/Top

- Successfully delivered the mid-term review of feasibility study in 2023
- On track for deliverables for the final report

Higgs mass and detector requirements

Higgs mass measured from the ℓℓ system of Z(ℓℓ)H recoil

Extended studies performed regarding detector/accelerator effects on the Higgs mass

Nominal configuration

Crystal ECAL to Dual Readout

Nominal 2 T \rightarrow field 3 T

IDEA drift chamber \rightarrow CLD Si tracker

Impact of Beam Energy Spread uncertainties

Perfect (=gen-level) momentum _ resolution

		100 1	
Fit configuration	$\mu^+\mu^-$ channel	e^+e^- channel	combination
Nominal	4.10(4.88)	5.17(5.85)	3.14(4.01)
Inclusive	4.84(5.53)	6.16(6.73)	3.75(4.50)
Degradation electron resolution $(*)$	4.10(4.88)	5.98(6.49)	3.32(4.11)
Magnetic field 3T	3.38(4.28)	4.30(5.00)	2.60(3.54)
CLD 2T (silicon tracker)	$5.51 \ (6.07)$	6.20 (6.70)	$4.01 \ (4.66)$
BES 6% uncertainty	4.10(5.01)	5.17~(6.10)	3.14(4.09)
Disable BES	2.27(3.42)	3.11(4.04)	1.80(2.99)
Ideal resolution	2.89(3.95)	3.89(4.56)	2.39(3.33)
Freeze backgrounds	4.10 (4.88)	5.17(5.85)	3.14 (4.00)
Remove backgrounds	3.37(4.34)	3.85(4.80)	2.49(3.56)

Precision measurements of Z, W, Higgs boson & top quark physics

- Z lineshape $\Delta m_{z} \sim 4 \text{ keV} \rightarrow \text{improve uncertainty by factor of 500 (almost 3 order of magn.)}$
- W boson mass $\Delta m_{W} \sim \text{ some few hundreds keV}$
- Higgs boson couplings to percent levels, independent full width measurement

Starting to work on R&D for CMOS MAPS vertex detector using simulations

Precision measurements of Z, W, Higgs boson & top quark physics

- Z lineshape $\Delta m_7 \sim 4 \text{ keV} \rightarrow \text{improve uncertainty by factor of 500 (almost 3 order of magn.)}$
- W boson mass $\Delta m_{W} \sim \text{ some few hundreds keV}$
- Higgs boson couplings to percent levels, independent full width measurement

Starting to work on R&D for CMOS MAPS vertex detector using simulations

Precision measurements of Z, W, Higgs boson & top quark physics

- Z lineshape $\Delta m_7 \sim 4 \text{ keV} \rightarrow \text{improve uncertainty by factor of 500 (almost 3 order of magn.)}$
- W boson mass $\Delta m_{W} \sim \text{ some few hundreds keV}$
- Higgs boson couplings to percent levels, independent full width measurement

Starting to work on R&D for CMOS MAPS vertex detector using simulations

Concluding remarks

MIT leads the CMS electroweak precision program

- First W boson mass measurement from CMS
- Using a large dataset with innovative theoretical modeling in-situ constraints
- Unprecedented calibration of the momentum scale down to 5 MeV
- Measurement in agreement with SM and in strong tension with CDF
- Plans for subsequent measurements on W boson mass and electroweak physics in general

FCC and the Future of The Energy Frontier

- Electroweak and Higgs/Top physics performance studies for the FCC
- Involve (under)graduate students in contributing to analyses and physics studies

