Physics at the energy frontier with the CMS Detector

> Christoph Paus April 3, 2025 NUPAX Open House

Particle Physics Collaboration (PPC)

Faculty

PPC web site: https://ppc.mit.edu/

A number of crucial operational responsibilities

~ half of the people are at CERN

Research Scientists, Postdocs

VisitingStudents

Graduate Students

Undergrads many many many

Particle Physics Collaboration (PPC)

Faculty

PPC web site: https://ppc.mit.edu/

A number of crucial operational responsibilities

► ~ half of the people are at CERN

Research Scientists, Postdocs

VisitingStudents

Join in 2025 Perfect for Run 3.

Undergrads many many many

LHC Location

CMS Proton-proton collisions at 13 TeV during Run 2 (Run 1 at 7/8 TeV) → at 13.6 TeV since June 5, 2022 (Run 3)

Long Shutdown 2 finished 2019-2022

LHC Data – Newest 2022/3/4

Mixed years

- Start went well, big quench and other repairs followed
- Great year 2024!
- Excellent continuation: 13.6 TeV

LHC Data – Newest 2024

Record breaking 2024

- LHC provided CMS with more int. luminosity than anticipated: 122/fb (110/fb was projected)
- The run had its issues but excellent planning and dedicated work keeps this machine performing extremely well

LHC Steady Increase

Mean number of interactions per crossing

Pileup expresses instantaneous lumi

• Event complexity also increasing: towards PU 200 at HL-LHC

Finishing Run 2 Analyses

Dark Matter searches

- Mono-X signatures (completed Mono-Jet, will come back after Run 3)
- Dark Photon searches
- Dark showers (Soft Unclustered Energy Patterns, SUEPs)

Higgs Physics

- Charged Higgs searches
- Invisible Higgs
- Higgs rare decays ($H \rightarrow M\gamma$, $M = \varphi$, ρ , ω , ...)
- Higgs to dimuon and bb

Standard Model analyses

- Precision measurement: W, Z masses, p_T spectra, α_s and sin² θ_w ?
- cross sections: Z p_T, WZ, WW, VBS cross section
- **B** Physics
- Rare decays: $B \rightarrow \mu\mu, D \rightarrow \mu\mu$

Analyses in blue started or planned with Run 3 data.

LHC Schedule – Long Term

LHC Physics is highest priority for P5 HEPAP panel

 \rightarrow fantastic opportunities for excellent physics right now \rightarrow with existing data, Run 3 started, and beyond

LHC Schedule – Long Term

We are here, right before the run starts

2030 2031 2	2032	2033	2034	2035	2036	2037	2038
J FMAMJJASONDJFMAMJJASONDJFMAM	MJJASONDJFM	MAMJJASONDJ	FMAMJJASOND	JFMAMJJASOND	JFMAMJJASOND	J FMAM J J A SOND	JFMAMJJASOND
Dun 4						Dun [
Run 4				54 		Kun 5	

Shutdown/Technical stop Protons physics Ions Commissioning with beam Hardware commissioning

Last update: November 24

Work Completed for Run 3

HCAL

- Transported the MAHI hit reconstruction to GPU
- Re-tuned and commissioned it
- Storage Manager and Data Transfer system
- Designed, purchased, built and commissioned new Storage Manager hardware
- Data movement software, overhauled and transitioned to python 3
- Expanded writing rate from 7 GB/sec → almost 40 GB/sec
- **Computing Operations Tier-0 and Processing**
- Tier-0 completely revised: new data management
- Tier-0 application can now run at Tier-1 or Tier-2 centers
- Tier-2 Computing center and Tier-3 center
- Major hardware upgrades for Run 3 including GPU servers
- Upgraded Tier-3 storage technology

Upgrade Projects

Storage Manager and Data Transfer system

- HL-LHC will need significantly larger system: design studies in progress
- **Tier-2** Computing center
- Needs to transition to new storage concept (cephFS)
- Massive hardware expansion needed: CPU, GPU, networking
- Tape Pilot project
- Established tape storage at MIT: need to move to production
- The NESE tape facility in Holyoke is fully integrated into the CMS storage system – network upgrades under way

Future Analysis Facility concept development

 New concept to support HL-LHC-and-beyond analysis is being developed (we have a prototype: SubMIT)

PPC Leadership

CMS Physics Coordinator (L1)

- Guillelmo Gomez Ceballos
- CMS B Physics convener (L2)
- Dmytro Kovalskyi
- CMS Computing Operations (L2)
- Dmytro Kovalskyi
- CMS Particle Flow (L2)
- Kenneth Long

FCC project

- FCC-ee Higgs convener: Jan Eysermans
- FCC-ee Precision Electroweak: Christoph Paus
- US FCC-ee Tracking coordinator: Christoph Paus

Mono-Jet and mono-V dark matter search

Search for physics with particles that decay invisibly in association with a jet

• performed in Mono-Jet and Mono-V categories and combined

Full Run 3 data Analysis planned

15/36

No significant excess of events is observed in data.

Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks.

Status W Mass

CDF experiments last word

• W mass too heavy by seven standard deviations !

Status W Mass

CDF experiments last word

• W mass too heavy by seven standard deviations !

Source: https://www.quantamagazine.org/fermilab-says-particle-is-heavy-enough-to-break-the-standard-model-20220407/

W boson mass mystery resolved **CMS** *Preliminary*

Work of a decade

- CMS finally finished
- Most complex analysis in CMS (arguably!)
- Excellent collaboration by many people
- PPC led the way to the finish line
- An extraordinary result
- Precision unexpected

What does it all mean?

- Tests self-consistency of the SM
- Resolved tension of CDF measurement
- MIT next step is to further reduce uncertainty, and measure m_{τ} and α_{s}
- New precision era at hadron colliders

LEP combination Phys. Rep. 532 (2013) 1		•	_
D0 PBI 108 (2012) 151804	— 80375 ± 23		_
CDF Science 376 (2022) 6589	- 80433.5 ± 9.4		┝━┥ _
LHCb JHEP 01 (2022) 036	— 80354 ± 32		_
ATLAS arxiv:2403.15085. subm.	to EPJC - 80366.5 ± 15.9		_
CMS This Work	- 80360.2 ± 9.9		EW fit
Justin's thesis	80300 80350	80400 <i>m</i> w	80450 / (MeV)
	Source of uncertainty	Non in m_Z	ninal in $m_{\rm W}$
	Muon momentum scale	5.6	4.8
N /	Muon reco. efficiency	3.8	3.0
IVI	W and Z angular coeffs.	4.9	3.3
surement	Higher-order EW	2.2	2.0
	$p_{\rm T}^{\rm V}$ modeling	1.7	2.0
ce	PDF	2.4	4.4
nd a	Nonprompt background	—	3.2
nd d _S	Integrated luminosity	0.3	0.1
colliders	MC sample size	2.5	1.5
Comatric	Data sample size	6.9	2.4
	Total uncertainty	13.5	9.9

m_w in MeV

W boson mass mystery resolved **CMS** Preliminary

Work of a decade

- CMS finally finished
- Most complex analysis in CMS (arguably!)
- Excellent collaboration by many people
- PPC led the way to the finish line
- An extraordinary result
- Precision unexpected

What does it all mean?

- Tests self-consistency of the SM
- Resolved tension of CDF measureme
- MIT next step is to further reduce uncertainty, and measure m_{τ}
- New precision era at hadror

		m _w in MeV			
LEP combination		— 80376 ± 33	- <u> </u>	•	_
Phys. Rep. 532 (2013) 1	19				
PRL 108 (2012) 151804		- 80375 ± 23	1	•	-
CDF Science 376 (2022) 6589	Э	— 80433.5 ± 9.4	ļ		┝━┥ -
LHCb JHEP 01 (2022) 036		— 80354 ± 32 ⊨	•	-	_
ATLAS arxiv:2403.15085, subm.	to EPJC	— 80366.5 ± 15.9	Ļ		-
CMS This Work		— 80360.2 ± 9.9	i I I		EW fit $^-$
Justin's			Lİ.	1	
JUSIIII S		80300	80350	80400	80450
incolo				$m_{ m V}$	_v (MeV)
	Source of uncertainty			Nominal	
				in m_Z	in $m_{\rm W}$
Muon momentum			scale	5.6	4.8
R /	Muon reco. efficiency			3.8	3.0
W an		d Z angular c	coeffs.	4.9	3.3
surement	Highe	er-order EW		2.2	2.0
	$p_{\rm T}^{\rm V}$ mc	odeling		1.7	2.0
се	PDF			2.4	(4.4)

First Run 3 analyses from PPC

First diboson measurements at LHC in Run 3: $W^+W^- \rightarrow e\nu\mu\nu$

- ~35 fb⁻¹ of CMS data collected in 2022, and publ. in PLB \rightarrow record time
- electron-muon events split by lepton charges, the number of jets, and number of jets identified as originating from b quarks
- PPC low level contribution: Essential to debug the Run 3 CMS detector

Inclusive cross section: 125.7 ± 5.6 pb agrees with predictions

First Run 3 analyses from PPC

World best limit

$$(D^0 \to \mu + \mu -)) < 2.6 \times 10^{-9}$$
 at 95% C.L.

Most stringent limit on flavor-changing neutral currents in charm sector, set additional constraints on new physics models that modify the decay branching fraction of $D0 \rightarrow \mu^+\mu^-$.

Low level PPC work: overhauled low momentum muon trigger and reconstruction

First Run 3 analyses from PPC

World best limit

$$(D^0 \to \mu + \mu -)) < 2.6 \times 10^{-9}$$
 at 95% C.L.

Most stringent limit on flavor-changing neutral currents in charm sector, set additional constraints on new physics models that modify the decay branching fraction of $D0 \rightarrow \mu^+\mu^-$.

Low level PPC work: overhauled low momentum muon trigger and reconstruction

- Future Circular Collider (FCC) Circumference: 90 -100 km Energy: 100 TeV (pp) 90-350 GeV (e⁺e⁻)
- Large Hadron Collider (LHC) Large Electron-Positron Collider (LEP) Circumference: 27 km Energy: 14 TeV (pp) 209 GeV (e⁺e⁻)
- **Tevatron** Circumference: 6.2 km Energy: 2 TeV (pp̄)

- $\Delta m_z \sim 4$ keV == improve uncertainty by factor of 500 (almost 3 order of magn.)
- $\Delta m_{W} \sim$ some tens of keV
- Higgs boson couplings to percent levels, independent full width measurement
- Starting to work on R&D for CMOS MAPS vertex detector
 - Will work with Gian Michele Innocenti who is constructing a lab for the EIC and beyond (see next presentation)

- $\Delta m_Z \sim 4$ keV == improve uncertainty by factor of 500 (almost 3 order of magn.)
- $\Delta m_{W} \sim$ some tens of keV
- Higgs boson couplings to percent levels, independent full width measurement
- Starting to work on R&D for CMOS MAPS vertex detector
 - Will work with Gian Michele Innocenti who is constructing a lab for the EIC and beyond (see next presentation)

- $\Delta m_z \sim 4$ keV == improve uncertainty by factor of 500 (almost 3 order of magn.)
- $\Delta m_{W} \sim$ some tens of keV
- Higgs boson couplings to percent levels, independent full width measurement
- Starting to work on R&D for CMOS MAPS vertex detector
 - Will work with Gian Michele Innocenti who is constructing a lab for the EIC and beyond (see next presentation)

- $\Delta m_z \sim 4$ keV == improve uncertainty by factor of 500 (almost 3 order of magn.)
- Δm_{W} some tens of keV
- Higgs boson couplings to percent levels, independent full width measurement
- Starting to work on R&D for CMOS MAPS vertex detector
 - Will work with Gian Michele Innocenti who is constructing a lab for the EIC and beyond (see next presentation)

Higgs Rare Decays

The exclusive hadronic decays $H \rightarrow M\gamma$, (also $H \rightarrow MZ$ and $h \rightarrow MW$) *M* is a meson such as ϕ , ω , ρ_{770}

Probe several different couplings of the Higgs boson to SM fermions both flavor-conserving and flavor-violating.

Increased branching ratio with respect to SM is sign of new physics.

First public results just published a few month ago

- Run 3: implement quasi real time analysis with new HLT capabilities
- Meson reconstruction with new ML techniques to increase efficiency are a must
- Any other channels?

Search for B_{s,d} $\mu^{+}\mu^{-}$

B decay through effective FCNC in Standard Model → rare

- Stringently helicity surpressed
- And CKM subpression from B_s to B_d

CMS

- Could cast some light on the present discrepancies in the B sector
 - 3 std LFU violation in R(K) and R(D*), 2-3 std discrepancies in branching ratios

Disappeared in CERN seminar (12/20/2022)

Confirmed in CERN seminar (3/21/2023)

Powerful test of theory prediction and indirect search for new mediator

- Legacy Run 2 analysis was a highlight at ICHEP 2022 and is published
- Substantially expanded trigger for Run 3
- B_d and K_s search are on their way, B_d might be in reach

 μ

Dark Photon $\rightarrow \mu \mu$ Search

Search for a prompt dark photon resonance in dimuon final state

- scouting data: masses from 1.00–2.63 GeV and 4.2–8.18 GeV
- Looking for a narrow resonance peak in the dimuon mass continuum.
 - New muon MVA IDs developed: improved sensitivity at low mass / scouting
- Result interpreted in Hidden Abelian Higgs Model and 2HDM+S.
- Sensitivity exceeds Babar/LHCb results, just a little For Run 3

No WIMP at LHC \rightarrow explore more complex DM scenarios: e.g. dark strong dynamics Strongly coupled hidden valleys through high-multiplicity decays of new heavy scalar mediators

- Searching for "belt of fire", spherically symmetric distribution of tracks \rightarrow exploit event shape variables to discriminate against QCD background
- Extremely difficult to trigger on soft sprays two ways:
 - Explore data scouting techniques or,
 - Require Initial State Radiation (ISR) and look at SUEP rest frame
- Snowmass proposal was submitted, first analysis just came out

Dark shower \rightarrow hidden valley

Two parameters to describe dark showers: mass of the lowest state particle m_{Φ} and the temparature T_D , which describes how the energy is distributed in the shower

Two parameters to describe dark showers: mass of the lowest state particle m_{Φ} and the temparature T_D , which describes how the energy is distributed in the shower

Two parameters to describe dark showers: mass of the lowest state particle m_{Φ} and the temparature T_D , which describes how the energy is distributed in the shower

Conclusion

Broad physics and detector programs

- Higgs, New Physics (inc. dark matter) and sensitive precision tests
- Promising analyses for Run 3 with great team and theses topics
- Invent your own thesis on CMS data
- Software, Computing, Trigger, DAQ, and Detector projects offer a lot valuable experience
- Contribution to future collider projects (FCC, C³) possible
- PPC has strong leadership in CMS detector and physics organization

It is an amazing time to join and stay in the field!

MIT is member of the CMS Collaboration

~50 Countries, ~250 institutes [US makes up ~30%] ~3000 Authors including ~1800 PhD's and ~950 PhD students

Research Computing Support

High Performance Research Computing Facility at BATES

- Build in 2009 with help from School of Science / MIT: ~ \$8M
- Largest shares at the time: CMS Tier-2, LIGO, EAPS, Chemistry
- Today: CMS Tier-2, HI Simulation center, LHCb Tier-2, CLAS12
- But also others: CTP (HPC cluster), Chemistry, EAPS ...
- Major successes and plans, *examples*
- 1st CMS publication on pp-collisions was performed on HPRCF
- MIT was prominent in Higgs discovery analysis and most of the analysis was done on HPRCF
- LHCb decided to integrate its only US Tier-2 into the HPRCF
- NSF proposal for large HPC center (CTP) was granted a
- NSF proposal for large AI center also relies on this spacend is integrated in the HPRCF