8.FCC - January Research Projects on the Future Circular Collider (FCC-ee)

Introductory Lecture [January 6, 2025]

Lecture Outline

- Introduction of Course Personnel Objective of the research projects
- Organization of the Lectures
 - Prerequisites
 - Schedule: lectures and tutorials
 - Final Conference and beyond
- Course Content Overview Overview of physics and projects

Personnel

Lecturers

- Christoph Paus, Eluned Smith
- Tutorials and hands-on help
- Anja Beck, Jan Eysermans, Dolores Garcia, David Walter
- Support
- Luca Lavezzo, Pietro Lugato, Kevin Yoon

Please all introduce yourselves!

The Lecturer, today

Christoph Paus

- physics career
 - started PhD 1992 at L3 (<u>e</u>+e-, LEP, CERN)
 - in 1998 moved to CDF (pp, TeVatron, FNAL)
 - since 2006 mostly CMS (pp, LHC, CERN)
 - started seriously on FCC in 2021

• physics measurements

- precision electroweak (Z boson mass & width, EWK parameters)
- *B* physics directly related to CKM matrix (Standard Model)
- Standard Model Higgs boson observation and properties
- Long series of various Dark Matter searches
- Searches for: Contact interactions, magnetic monopoles, pentaquarks, excited onia, rare decays

Objective of this Research Experience

Course focus

- introduce experimental methods
- perform typical measurements at the FCC-ee using simulated data

Not the purpose of this course

- provide fully fledge theoretical background
 - quantum field theory courses good for that
 - also nuclear and particle physics standard graduate courses
- provide in depth discussion of how detectors work
 - nuclear and particle physics standard graduate courses
 - maybe specialized course for detector design and construction

Goal in practical terms

- learn how to do research as an experimentalist at the FCC-ee
- be prepared to go to CERN and start an analysis in the summer
- .. or at least know how experimentalists work in High Energy Physics

Organization

Prerequisites

- Basic Physic classes AP level
- Nice to have: special relativity, quantum physics
- Stretch: have heard particle physics 1+2 but not needed

Dates

- Schedule has some flexibility
- First ~2 weeks lectures: Mon-Fri 9am–10:30am (24-506)
- First ~1 week tutorials: Mon-Fri 1pm–2pm (24-506)
- Daily support in person
- Research conference on Friday January 31, 2025

Organization

Execution

- Participation from outside MIT welcome, but local supervisor needed
- Lecture slides will be available from the Web
- Core of the experience
 - Learn basic tools of the trade
 - Perform a complete analysis on FCC-ee simulation
 - Report about your project in short conference presentation
- It is possible to pair up and work together
- If there is time summarize analyses in a short note
- Conference at the end of the course, one topic per student

Technicalities

Access to computing resources

- Get account at MIT, if you are not at MIT
- request account by sending email to paus@mit.edu

Access to course software etc

- Make an account on subMIT our computing system
- Go to: https://submit-portal.mit.edu
- Follow instructions (possibly email submit-help@mit.edu)

Video tools

- ZOOM: https://mit.zoom.us/j/93715345658?pwd=6B9qQHzLzNUSPWnn1JH7Onu7SmlITb.1

Course Content

Five big blocks

- Introduction and overview
- Experimental setup
- Fundamental measurements
- Overview of the FCC-ee program
- Key detector components

Lecture plan not exactly cast in stone

• if you have special wishes let us know

Course Content – more details

- Introduction and overview
- introductory lecture
- **Experimental setup**
- Particle accelerators
- Particle detectors
- Fundamental measurements
- Cross sections, particle masses, particle lifetimes and widths
- Overview of the FCC-ee program
- Physics at the Z pole, the Higgs and top thresholds, new physics
- Key detector components
- Tracking, Calorimetry, and Particle Identification (Id)

Interesting Material

Videos: academic lectures and presentations

- CERN: https://cds.cern.ch/collection/Webcast?In=en
- SLAC: https://indico.slac.stanford.edu/event/8587/page/92-past-ssi
- FNAL: visual media site check the archives

Wikipedia

- FCC: https://en.wikipedia.org/wiki/Future_Circular_Collider
- LHC: https://en.wikipedia.org/wiki/Large_Hadron_Collider
- CMS: https://en.wikipedia.org/wiki/Compact_Muon_Solenoid
- CDF: https://en.wikipedia.org/wiki/Collider_Detector_at_Fermilab
- also try google, YouTube etc.
- fantastic documentation on the Web though, read with care

References will be provided throughout the course

The Standard Model of Particle Physics

'Last' problem

 Local gauge invariance only conserved for massless particles

Solution (1964-6)

- There should be at least one field to couple to, to generate mass terms – implies that there is at least one Higgs boson.
- LHC found it 2012

Run 1 at LHC brought the Higgs

Historic Event: CERN–Melbourne

CERN

Melbourne

Rolf Heuer: 'We have it!'

4th of July 2012 – new Higgs–like particle discovery

The Standard Model of Particle Physics

Remaining obvious problems

- We have no explanation for what dark matter is
- Why is the value of the Higgs mass the known value? #HierarchyProblem
- Why are forces so different (electromagnetic, weak, strong)?
- Gravity is an alien to the Standard Model it does not fit! It is super weak!
- Why do we see so much matter and very little anti-matter in the universe
- and there are more interesting questions ...
- Theorists favorite solution(s) for 1-3
 - Supersymmetry by giving each SM particle a super partner
 - So far no trace found...

What was/is next for me?

Rotational Velocity

additional 'dark' matter to be present.

Gravitational Lensing

Bullet Cluster

visible matter

dark matter

3

Searching Dark Matter with CMS

Signature

- Dark matter does not interact with detector
- Sooo.... the detector is empty?
- But if the initial state has radiation Well defined:

Compact Muon Solenoid

compact 1

Adjective

- closely packed together
- neatly fitted into a restricted space

concise; brief

Overview: CERN (Geneva, Switzerland)

The LEP/LHC Tunnel Setup

The LEP/LHC Tunnel Setup

LEP Tunnel before LHC

Empty Tunnel: LEP Disassembled

The LHC Dipoles

Ch. Paus & E. Smith, 8.FCC: Introductory Lecture

LHC Pictures: Simulation

LHC Pictures: Real Dipoles

LHC Pictures: Tunnel with Beamlines

LHC Experiments

Two omnipurpose* detectors

- Atlas
- CMS (C.P. experiment)
- One dedicated B physics experiment
- LHCb (Eluned Smith experiment)
- One dedicated heavy ion experiment
- Alice

* multipurpose = do heavy ion and *B* physics as well

The LHC Experiments

Alice: Detector Sketch old L3 magnet

Ch. Pauls & F. Smith & FOOL L.

Ch. Paus & E. Smith, 8.FCC: Introductory Lecture

Alice: December 2006

Atlas/CMS Motivation

LHC is a new energy regime: uncharted territory

The guaranteed mission (seek and destroy)

- find the Standard Model Higgs: completes SM, for now
- do not find the SM Higgs: falsify the model because machine fully covers available phase space

The case for beyond the Standard Model

- new energy regime opens new doors
- anything beyond the Standard Model is a sensation
- be it SUSY, extra dimensions, leptoquarks, Z', or even better: the completely unexpected

Atlas: Detector Sketch

the biggest collider detector ever, by far eye catcher: central air core toroid magnet

light weight construction: if wrapped in plastic it floats on water (22,000 m³) still, weights more than half the Eiffel tower

Ch. Paus & E. Smith, 8.FCC: Introductory Lecture

Atlas: Real Installation

CMS – Compact Muon Solenoid

12,500 ton weight, 15 m diameter, 22 m long

compact does not mean small volume smaller than Atlas by ~5.6, but weights 30% more than the Eiffel tower eye catcher: brilliant design in separately removable slices

CMS: Installation

LHCb: Mission and Sketch

The Large Hadron Collider beauty experiment
for precise measurements of *CP* violation and rare
decays

LHCb: At the Interaction Point

CDF Detector Pictures

CDF: Time Of Flight Detector

Ch. Paus & E. Smith, 8.FCC: Introductory Lecture

CDF: Central Outer Tracker

CDF: Central Outer Tracker

CDF: Silicon Detector

CDF: Silicon Vertex Detector

Conclusions

We have a month ahead of us

- Learn how an experimenters work
- Experimental setup
- Basic physics ideas
- Basic measurements
- Give a talk
- Instructions for course
- get registered for a user account on subMIT our computing resource
- Review the projects to see which one you are most interested in