
8.FCC - January Research Projects on the Future Circular Collider (FCC-ee)

Accelerators ... continued [January 10, 2025]

Outline

Accelerators

- why do we accelerate particles?
- basic physics of accelerators
- various accelerator types
- hadron versus lepton colliders
- examples of accelerators today
 - LEP, TeVatron, LHC
- future of accelerators: ILC, FCC, muon collider

Basic Accelerator PhysicsLorentz Force: $\vec{F} = \frac{d\vec{p}}{dt} = q\vec{E} + q(\vec{v} \times \vec{B})$ electric forcemagnetic forceMagnetic force perpendicular to velocity \rightarrow no increase in velocity, but changes direction

Only electric force increases particle energy

From the Maxwell equations:

$$\vec{E} = -\nabla\phi - \frac{1}{c}\frac{\partial\vec{A}}{\partial t} \qquad \vec{B} = \nabla \times \vec{A}$$
$$\vec{A} = 0$$

static:

Summary on Accelerator Types

Electrostatic accelerators

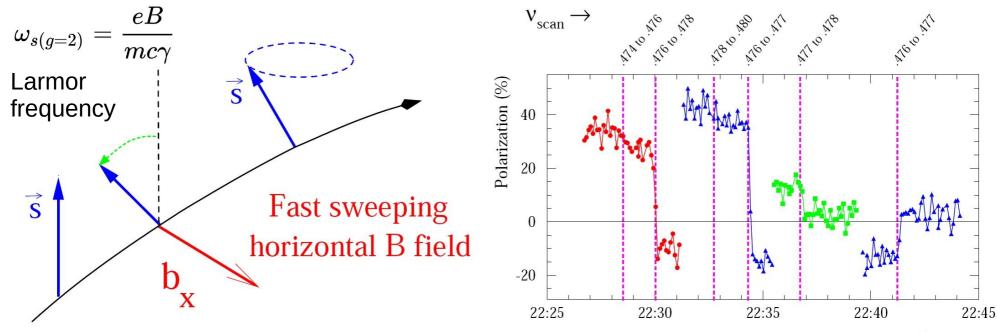
Acceleration tube: breakdown at 200 keV Cockroft-Walton: improves to 800 keV Van de Graaff: best electrostatic device at 25 MeV

AC driven accelerators Linear: cavity design and length critical Circular accelerators: cyclotron: big dipole magnet, non-relativistic, up to 25 MeV synchrotron: vacuum beamline, expandable, small magnets and particles

Hadron versus Electron Colliders

From the physics point of view

	electron	proton
elementary particle	yes	no
point like	yes	no
uses full beam energy	yes	no
transverse energy sum	zero	zero
longitudinal energy sum	zero	non-zero

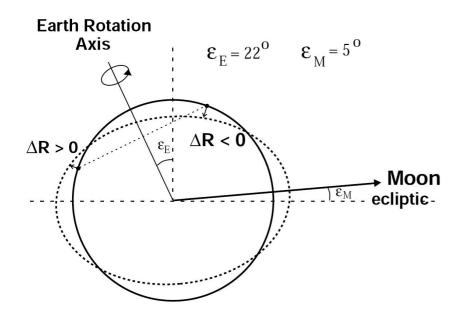

From the accelerator point of view

	electron	proton
synchrotron radiation	large	small

Complementary devices

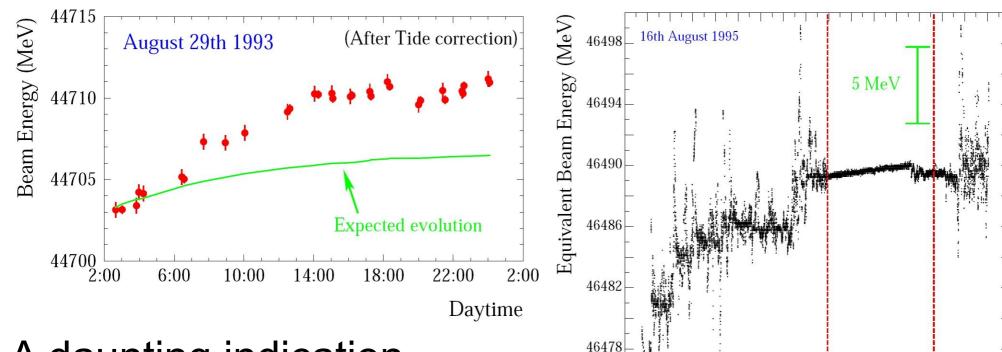
Energy calibration (resonant depolarization)

- Transverse polarization automatically builds up (Sokolov-Ternov)
- Monitor transverse polarization level
- Kick rotating electrons with periodic magnetic field
- Tune in frequency which destroys polarization (resonance)
- Very sensitive method: about 0.5 MeV on 45 GeV beams



<u>https://www.sciencedirect.com/science/article/pii/037026939290457F</u>: PLB 284,3 (1992) 431

6


Calibration nightmares: part 1 calibration changes sensitive to small changes in circumference: $\Delta C/C \approx 10^{-9}$

fluctuations in first calibrations explained by tides

Calibration nightmares: part 2

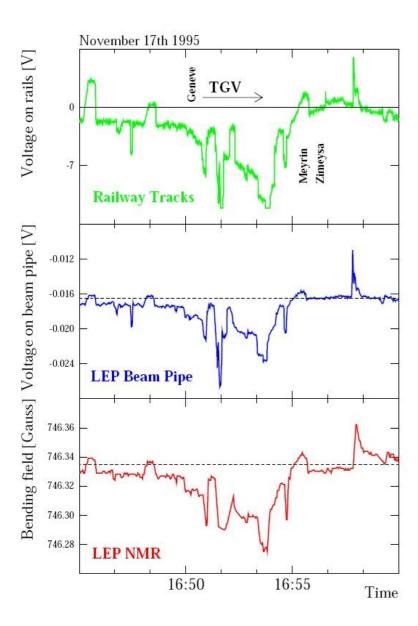
A daunting indication

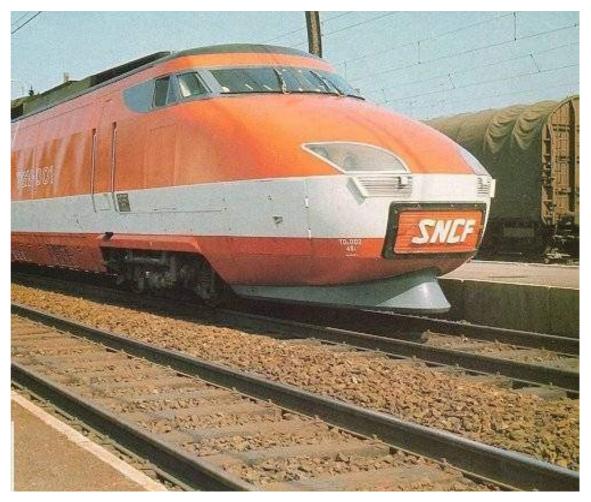
- will remain unexplained for 2 years
- until an undergrad from Aachen (Mark Geitz) comes out for the summer

16:00 18:00 20:00 22:00 00:00 02:00 04:00 Smoking gun

Noisy period

46474


• man made problem


Ouiet period

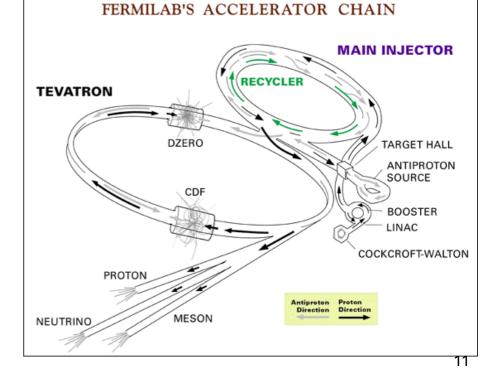
06:00

Daytime

Modern' Accelerators: LEP The French DC trains caused the problem

1A current on beampipe

The limits of LEP


- synchrotron radiation energy: $E_{sync} \propto \gamma^4$
 - at 100 GeV: $\Delta E_{\text{beam}}/E_{\text{beam}} = 0.02 \rightarrow E_{\text{loss}}/\sqrt{\text{s}} = 0.10$
 - energy consumption: 20 MW (small village)
 - length of machine affects synchrotron radiation losses
- tunnel completely full of cavities (superconductive)
- wakefield: left in the cavity deposit energy
 - absorption of 40 kW at 4 K
 - corresponds to 10 MW energy needed
- horizontal beam size increase: $\sigma_x \propto \gamma$
 - touched beampipe walls

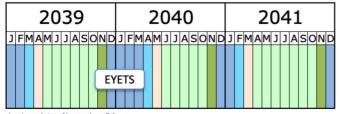
'Modern' Accelerators: Tevatron

TeVatron

- Synchrotron: 1 km radius
- operational: 1985-2011
- at Fermilab (Chicago, USA)
- detectors: CDF, Dzero
- Ebeam: 1 TeV, p-pbar (1 mA)
- physics goals: Higgs, NP, top, b
- superconducting magnets: 4.2 T
- complex acceleration chain
 - Cockroft-Walton (750 keV, H⁻⁻)
 - LINAC(400 MeV, strip to create p)
 - Booster (8 GeV)
 - Main Injector (120 GeV)
 - Tevatron (1 TeV)

Modern Accelerators: LHC

- Large Hadron Collider (LHC)
 - Synchrotron: 4.5 km radius
 - Operational: 2007-2041?
 - at CERN (Geneva, Switzerland)
 - detectors: Alice, Atlas, CMS, LHCb + smaller
 - E_{beam} : 7 TeV proton (0.5 A) $\rightarrow \sqrt{s}$ = 14 TeV
 - schedule: pilot run 2007, physics run 2008
 - physics goals: Higgs and New Physics Discovery
 - dipole magnets, the core of LHC (1232)
 - superconducting dipoles: *B*=8.4 T; *T*=1.9 K, *I*=11.7 kA
 - superfluid helium cooling


Modern Accelerators: LHC

Large Hadron Collider (LHC)

- Long term schedule set into the early 40ies
- There are some uncertainties projecting forward for so long

2030	2031	2032	2033	2034	2035	2036	2037	2038
JFMAMJJASOND	J FMAM J J A SOND	JFMAMJJASOND						
	Run 4				S4		Run 5	

Shutdown/Technical stop Protons physics Ions Commissioning with beam Hardware commissioning

LHC Dipoles Complete

LHC Layout

Low β (pp) Dipoles at 8.4 T High Luminosity CMS $B[T] = \frac{2\pi}{0.3} \frac{p[\text{GeV}]}{FL[m]}$ RF Dump & Future Expt. Octant 5 Octant A Octant 6 momentum: 7000 GeV Octant 3 tunnel: 27000 m Octant 7 Cleaning Cleaning arcs length: 22200 m Octant® Octant 2 80% of arcs filled: F = 0.8Octant 1 **LHC-B** LICE compare to Injection mection iron saturation: 2 T Low B Low β (Ions) Earth magnet: $0.3 \times 10^{-4} T$ (B physics) Low β (pp) **High Luminosity**

Energy Stored in an LHC Beam

Energy stored is huge

beams store 700 MJ: battleship gun is about 300 MJ beam dump (70 μs) will create 10 TW of power, which is half the entire world's instantaneous power

Comparison

LEP

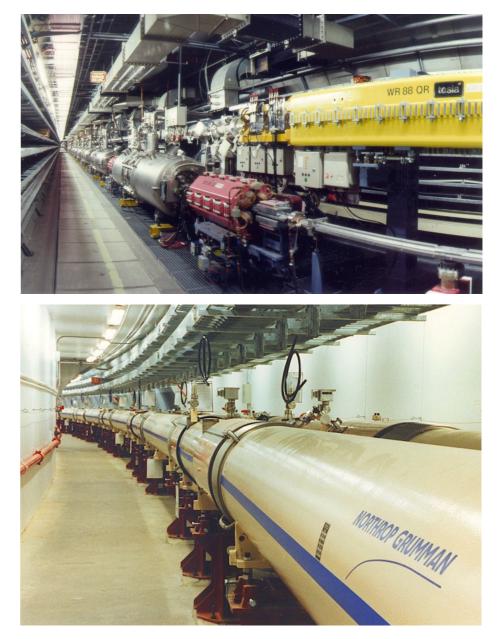
- Luminosity: 10³² cm⁻⁻² s⁻⁻¹
- number of bunches: 8 x 8,
- bunch size: like a flat needle: 10 cm, 250 μ m, 80 μ m

TeVatron

- Luminosity: 3 x 10³² cm⁻⁻² s⁻⁻¹
- number of bunches: 36 x 36, per bunch: p-10¹¹, pbar-10¹⁰
- bunch size: 30 cm, 30 μm, 30 μm

LHC

- Luminosity: 10^{34/35} cm⁻⁻² s⁻⁻¹
- number of bunches: 2800


Other Accelerators

HERA, 1991 (Hamburg, Germany)

- e (27.5 GeV) p (920 GeV)
- radius: 1 km, *B* = 5.5 T, *T* = 4.4 K
- 180 bunches, *I* = 0.5 mA

RHIC, 1999 (New York, USA)

- Au Au ... p p at 250 GeV
- radius: 0.60 km, *B* = 3.5 T; *T* = 4 K
- 57-114 bunches, *I* = 0.013 mA

Future of Accelerators

Linear collider, ILC (technically proven): 0.5-3 TeV

- strong international collaboration
- awaiting directions from LHC findings
- political decision of location
- VLHC (issue: magnet development): 40-200 TeV
 - 95 km; B = 12 T; n = 20800 (~ FCC-hh)
 - 520 km; B = 2 T; n = 130000

Muon collider (issues: source/lifetime) 0.5-4 TeV

- lepton collider virtually without synchrotron radiation
- Higgs factory (40,000 times larger coupling then e⁺e⁻⁻)

Conclusions

Motivation for particle acceleration

- understand matter around us: "nuclear physics"
- create new particles : "particle physics"
- Particle acceleration types
 - electrostatic: limited to 25 MeV
 - AC driven: linear or circular, open ended
- **Modern Accelerators**
 - LEP and LHC
 - Future accelerators: FCC, ILC, muon collider

Next Lecture

Particle Detectors Overview

- Introduction and a bit of history
- General organization of detectors
- Particle interactions with matter
- Tracking
- Calorimetry
- Modern integrated detectors
- Conclusions and next lecture