

FCC-ee IDEA detector concept

FCC IDEA

Beam Background Drift Chamber

Alexander Poulin, Charles Schwarze, Dolores Garcia, Christoph Paus, Jan Eysermans, Luca Lavezzo, Eluned Smith

Beam Background Study

- Beam Induced Background on the IDEA Detector (Wire Drift Chamber) version **o1_v03** with CAD beam pipe
- Focused on luminosity background signals caused by two counter-rotating beams
- Lead by Incoherent Pair Production (Guinea Pig Simulation)
 - Signal Z→ $q\bar{q}(q=u,d)$ at E_{CM} 91 GeV generated with Pythia

Goals

- Characterize the background
- Separate background from signal hits in the tracks

Hits of MC particles that left hits in the drift chamber

- Explored how many hits an MC particle left in the drift chamber
 - Normalized to density to compare signal and background one to one

Research in experimental particle physics, MIT January

- Key Properties:

FCC

- Signal & bkg share high volume of low hits
- Signal retains a larger volume as the number of hits increases due to signal particles have higher momentum

3

Momentum of MC particles that left hits in the drift chamber

- Investigated the momentum of an MC particle given it left hits in the drift chamber
 - Normalized to density to compare signal and background one to one
- Key Properties:
 - Again signal & bkg share similar volumes of low momenta particles
 - Signal retains a larger volume as the momentum increases, bkg falls off around 0.1 Gev
 - Signal has higher energy due to Z→qq

4

5

PDG of MC particles that left hits in the drift chamber

- Explored the types of particles which left hits in the drift chamber
- Key Properties:

FCC

- Bkg signals is mostly electrons especially at lower energies
- Some unexpected particles in bkg signals due to minimum E threshold (in ddsim)
- Signals has more diverse particles due to generation from physics event

Location of Hits and Monte Carlo Particles on XY-Plane

MCParticle Distribution across X and Y (3989 files)

- Explored how hits and MCParticles (vertex) are distributed over XY-Plane
- Red circle indicates radius outermost layer of the outer Vertex Detector

Key Properties

- MCParticles are generated throughout the detector
- Most generated close to the center of the drift chamber
- Leave hits close to where they are generated

Hit Distribution across X and Y (3989 files)

Location of Hits and Monte Carlo Particles on Phi and Z plane

- Looked at location of particles and hits based on Z axis and Azimuthal Angle

Key Properties

- MCParticles are generated at a higher concentration near the ends of the detector, leave hits at the same place
- This is likely explained by the 'crotch' where the interaction region separate again in two pipes

Hit Distribution across Z and Phi (3989 files)

Visualization of Hit Trajectories

- Aimed to characterize behavior of horizontal groups of hits
- Color-Indexed by MC Particle ID

Key Properties

- Top graph only uses one event file
- Hit tracks come in different lengths
- Most tracks consist of 20-40 hits
- Length of track scales with # of hits

3500 3600 3700 3800 3900 400 Difference between Max and Min Z (mm)

9

Occupancy

- Detector is composed of many wires, these are split as:
 - 14 Superlayers
 - Each superlayer has layers, total layers for entire detector is 112
 - Each layer has cells which increase with radius
- Occupancy is the percentage of cells that has been hit
 - Calculated where for each layer, get the percent of the number of cells that has been hit by the total number of cells for that layer

Occupancy of MC particles

Bunch (20 Bkg-Green, 1 Signal-Red)

- Investigated the average occupancy for a given batch, Bkg batch was 20 event, Signal batch was 1 event
 - Batched since an overlaid file has 1 signal event with 20 bkg events
- Key Properties:

FCC

 Signal and background share the pattern where, as layer index increases, occupancy decreases

The Future

Whats next:

- Explore differences in overlaid signal and background files
- Validate occupancy and track length calculations
- Identify key characteristic between signal and background
- Preform cuts to remove background from overlaid signal

Any Questions?

Thank you

Alexander Poulin, <u>Charles Schwarze</u>, Dolores Garcia, Christoph Paus, Jan Eysermans, Luca Lavezzo, Eluned Smith