Lattice-QCD >> Software >> Hardware Joshua Lin Lattice-QCD group \in CTP

- 1. What is Lattice-QCD?
- 2. How is Lattice-QCD performed? (standard computations)
- 3. Overview of some Lattice QCD 🔝 Submit Cluster projects

What is: Lattice-QCD

$$\langle \overline{\psi}(x_1) \cdots \overline{\psi}(x_n) \psi(y_1) \cdots \psi(y_n) \rangle = \int \mathscr{D}A \mathscr{D}\overline{\psi} \mathscr{D}\psi \ \overline{\psi}(x_1) \cdots \overline{\psi}(x_n) \psi(x_n) \psi(x_n)$$

Progress in Lattice-QCD

Space of all observables

Progress in Lattice-QCD falls into a few categories:

- Computers get faster, allowing for more precise measurements of physical quantities.
- Develop new techniques for measuring things we already knew how to measure, *better* or *faster*
- Develop techniques to measure *previously unmeasurable* quantities.

How is: Lattice-QCD done

- Algorithms are well-documented, standardised*...
- There are a few packages that really dominate the market:

Figure 1: The SciDAC Layers and the software module architecture.

*It is empowering to be able to write all code from ground up

+Grid/GPT, LatticeQCD.jl, <u>SIMULATeQCD</u> ,"jaxlat"(working name), others...

HOW STANDARDS PROLIFERATE: * (SEE: A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC.)

SITUATION: THERE ARE 14 COMPETING program

Goal: Do cool science

"Problem": spend time stuck in the weeds dealing with writing build scripts, reproducible environments, compilation errors, ...

(my) Workflow for standard calculations

Project 1 : "The Edge of the Fireball"

(Boundary criticality of Quantum Yang Mills)

Project 1 : "The Edge of the Fireball"

(Boundary criticality of Quantum Yang Mills)

(mostly motivated by Max Metlitski's physics colloquium 11/21/2024)

Project 2 : Strong Coupling Expansions

- Idea : do perturbation theory in $\frac{1}{\alpha_{S,\text{QCD}}}$
- In condensed-matter setups, these expansions are usually known as `High-temperature expansions'
- Works incredibly well for certain system we get it to work well for QCD?
- People tried in the 80s, but ran into a fe problems:
 - It's hard to enumerate diagrams by hat (they got it wrong in a couple places)
 roughening transitions

	15.5	$4d(d-1)(d-2)(4d^2-22d+51)$	θ,
nsions	16.1	$\frac{1}{2}d(d-1)(d-2)(4d^2-24d+37)$	<i>S</i> 10
	16.2	$\frac{1}{8}d(d-1)(d-2)(d-3)$	T_1
ns, can	16.3	$8d(d-1)(d-2)(d-3)^2$	<i>S</i> ₁
	16.4	$16d(d-1)(d-2)(d-3)^2$	<i>S</i> ₁
ew	16.5	$16d(d-1)(d-2)(d-3)^2$	S 10
	16.6	$\frac{1}{3}d(d-1)(d-2)(d-3)(2d-5)$	05
and	16.7	$-d(d-1)(d-2)(22d^2-113d+147)$	S ₆ :
)	16.8	2d(d-1)(d-2)(d-3)	θ_6
	16.9	$\frac{1}{2}d(d-1)(d-2)(2d-5)^2$	ζ51
	16.10	$2d(d-1)(d-2)(4d^2-22d+31)$	Ĭn

951

16

16

5₁₆

516

5551 6551

9664

51451

....

Project 2 : Strong Coupling Expansions

- Improved algorithms allow us to prune many diagrams that give 0 contribution

- We can generate new coefficients (letting us probe the roughening) transition to greater precision)

Thank You!