dN/dEta and Z-Hadron

Yen-Jie Lee

MITHIG Group Meeting December 20, 2024

MIT HIG group's work was supported by US DOE-NP

Status of dN/dEta (HIN-23-007)

- All the PLB referee comments are addressed
- Received GL from HIN Pubcom chair, iterating with CMS Pubcom
- Hope we get this paper resubmitted soon

Status of Z-hadron (HIN-23-006)

- Hannah and Yen-Jie prepared the new CWR response, and now blessed by ARC chair. Now in the hand of CCLE (George)
- Cross-check to see if we could turn off the effect by going to very low pT
- Yen-Jie and Luna reprocessed the samples to include neutral hadrons in the reduced tree

Standard analysis by going to Z pT 10-20 GeV

Evidence of Medium Response to Hard Probes with Z⁰-tagged Hadrons in PbPb at 5.02 TeV

Standard analysis by going to Z pT 10-20 GeV

) Evidence of Medium Response to Hard Probes with Z⁰-tagged Hadrons in PbPb at 5.02 TeV

Standard analysis by going to Z pT 0-10 GeV

Standard analysis by going to Z pT 0-10 GeV

) Evidence of Medium Response to Hard Probes with Z⁰-tagged Hadrons in PbPb at 5.02 TeV

Neutral Hadron (Delta Phi)

Neutral Hadron (Delta y)

Backup slides

Azimuthal Angle Distributions in pp and 30-50% PbPb

Nuclear Science

CMS

Azimuthal Angle Distributions in pp and 0-30% PbPb

Azimuthal Angle Distributions in pp and 0-30% PbPb

Juclear Science

13

Azimuthal Angle Distributions in pp and 0-30% PbPb

CMS

Rapidity Distributions in pp and 50-100% PbPb

Rapidity Distributions in pp and 30-50% PbPb

16

Rapidity Distributions in pp and 0-30% PbPb

Comparison with Theoretical Models

Jewel Model

(Jet Evolution with Energy Loss)

- pQCD-based energy loss model
- High-energy partons scatter with medium particles; **Recoiled partons** and holes **do not re-scatter** with QGP constituents.

CoLBT hydro Model

(Coupled Linear Boltzmann Transport and Hydrodynamics)

Based on pQCD. Integrates the Boltzmann transport equation with QGP hydrodynamic simulations.
Introduces reheating, where parton energy loss could heat and modifies the QGP.

Reheating or Cooling Parton Elastic scattering and Radiation

Hybrid Model

(Hybrid Strong/Weak Coupling Approach)

Based on the AdS/CFT, combining pQCD shower and strong-coupling dynamics.
Lost energy deposits a hydrodynamic wake in the QGP via 4-momentum conservation.

Evidence of Medium Response to Hard Probes with Z⁰-tagged Hadrons in PbPb at 5.02 TeV

Azimuthal Angle Distribution in 0-30% PbPb vs. Theory w/o Medium Response

 Hybrid without wake and Jewel without recoil (dashed lines) underpredict magnitude at low hadron p_{T}

• PYTHIA8 lower $p_T Z^0$ events: can approximate jet quenching (similar to **no-wake/recoil** models with only the jet shower). It fails to describe data for hadron $p_T < 4$ GeV.

CMS-PAS-HIN-23-006

Azimuthal Angle Distribution in 0-30% PbPb vs. Theory

1<p_+^cl<2 GeV

PbPb (pp) 5.02 TeV 1.67 nb⁻¹ (301 pb⁻¹)

PbPb 0-30%

Hybrid No wake

Hybrid

 $4 < p_{\tau}^{ch} < 10 \text{ GeV}$

 $2 < p_{\perp}^{ch} < 4 \text{ GeV}$

CMS *Preliminary*

40<p^Z₋<350 GeV

|y₇|<2.4

3

 Hybrid without wake and Jewel without recoil (dashed lines) underpredict magnitude at low hadron p_{T}

• Hybrid with wake, Jewel with recoil and CoLBT with wake (solid lines) agree better with the data with hadron $p_T < 4 \text{ GeV}$

Evidence of Medium Response to Hard Probes with Z⁰-tagged Hadrons in PbPb at 5.02 TeV 20

Rapidity Distribution in 0-30% PbPb vs. Theory without Medium Response

 Hybrid without wake and Jewel without recoil (dashed lines) underpredict magnitude at low hadron p_{T}

• Lower p_T Z⁰ tagged PYTHIA8 events also fails to describe data with hadron $p_T < 4$ GeV.

Evidence of Medium Response to Hard Probes with Z⁰-tagged Hadrons in PbPb at 5.02 TeV 21

Rapidity Distribution in 0-30% PbPb vs. Theory

 Hybrid without wake and Jewel without recoil (dashed lines) underpredict magnitude at low hadron p_{T}

 Hybrid with wake, Jewel with recoil and CoLBT (solid lines) agree better with data

CMS-PAS-HIN-23-006

With Δy and $\Delta \phi$ spectra at low charged hadron p_T : The first evidence of negative **QGP** wake!

22

News from Soft-Jet 2024 Workshop

Comparison between ATLAS vs CMS

• Both results shows diffusion wake dip, qualitatively consistent with each other

Yeonju Go (BNL)

SoftJet 2024 @ Tokyo, Japan / 2024 September 28-29

Evidence of Medium Response to Hard Probes with Z⁰-tagged Hadrons in PbPb at 5.02 TeV

19

CMS