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AI + Astronomical Sciences (AST) 
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● Inverse Problems with Simulation Based Inference: Enables intractable computational 
tasks through robust inference without relying on simplistic summary statistics.

● Representation Identification: Accelerates identification of representations across 
domains - from galaxy morphology, gravitational lens to stellar parameter estimation.

● Multimodality Integration and World Model: Combine heterogeneous data types 
(imaging, spectroscopy, time series) to construct more complete physical models.

● Anomaly Detection: Deep generative models improve discovery of novel astronomical 
phenomena and outliers in large datasets.
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AI in Astronomical Science (Inverse Problem)
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AI techniques extract maximum physical information from observations through 
efficient simulation-based inference, enabling parameter estimation from complex data.

● Cosmology: Field-level inference methods going beyond summary statistics to 
constraint cosmology parameters.

● Gravitational wave astronomy: Modeling complex inverse problems like spin 
precession, dramatically reduced computational costs for real-time alerts.

● Exoplanet research: Efficient exploration of multimodal posterior distributions. 
Integration of multiple observation modes for parameter estimation.

● Stellar astrophysics: Advancing spectral analysis. Analyzing stellar oscillation data to 
determine interior properties beyond human heuristics
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AI in Astronomical Science (Anomaly Detection)
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AI enables detection of novel phenomena in datasets without theoretical biases

● Time-domain astronomy: Handling of irregular sampling and heterogeneous noise 
in light curves enables early detection of transients.

● Galaxy evolution studies: Understanding evolution through latent space 
representations. Creation of synthetic populations for training data augmentation.

● Solar and heliophysics: Identification of features like sunspot groups and space 
weather events. Neural fields for improved reconstruction of solar surface features.

● Stellar astrophysics: Identification of rare stellar types. Automated pipelines eliminate 
false positives in searches for stellar-mass black holes and eclipsing binaries.
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Yuan-Sen Ting, The Ohio State University (AST)
● Astro Statistician working mostly at tackling inverse problems 

(stellar astrophysics and cosmology).

● Care deeply about robust uncertainty quantification through 
proper Bayesian treatment (boo, AI). Responsible AI

● Train domain specific foundational models (spectral analysis) 
with robust domain transfer ability. (yay! AI) 

● Advancing LLM agents for autonomous astronomical research (led 
the AstroMLab team - with people from Oak Ridge / Argonne)

● Training specialized LLMs (AstroSage / AstroLLaMA), creating 
agent benchmarking, and applying agents to accelerate discovery.
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Yuan-Sen Ting, Astro-Statistician goes Rogue
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How to reason about ALL James Webb's 
observations autonomously?
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Teaching my astro-statistics course 
with LLM agents

Yuan-Sen Ting, Educator goes Rogue
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Future Opportunities: AI in Astronomy 
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● Astronomical Foundation Models: Developing models trained across multiple wavelengths 
and phenomena to enable robust transfer learning.

● Multi-Agent Research Systems: Integrated workflows from literature review to theoretical 
interpretation, accelerating the observation-to-discovery cycle.

● Responsible AI Adoption: Establishing astronomical benchmarks and evaluation protocols to 
maintain scientific rigor.

● Physics-Informed AI: Integrating physical principles, symmetries, and conservation laws 
directly into model architectures to ensure results respect underlying physical reality.

● Next-Gen Observatory Support: AI will be crucial for handling petabyte/exabyte-scale 
datasets from Rubin Observatory, Roman Space Telescope, and Square Kilometre Array.
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AI + AST Questions to Consider
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● Besides making things "faster" / better inverse problem solving, can AI make 
physically motivated / interesting discoveries?

● Can AI make interesting discoveries by itself? If not, to what extent can it 
contribute?

● What is the utility of AI in underexplored subdomains of astrophysics?

● What are the key challenges in creating a healthy ecosystem of AI × Astronomy? 

Driving Question: How can the MPS domains best
capitalize on, and contribute to, the future of AI?  
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Domain Overview: Chemistry

Pratyush Tiwary, University of Maryland

10 minutes presentation + 5 minutes Q&A
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AI + Chemistry (CHE)
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AI’s impact on Chemistry

● Accelerated Molecular Discovery: AI-driven models can help design molecules for 
drug discovery, catalysis, and materials science.

● Smarter Reaction Prediction: Machine learning improves reaction outcome 
forecasting, retrosynthesis, and arguably mechanistic understanding.

● Faster & More Accurate Simulations: AI enhances quantum chemistry, molecular 
dynamics, and force field accuracy, reducing computational costs.

● Automated Chemical Experimentation: AI-guided lab automation optimizes synthesis, 
high-throughput screening, and data extraction.

These highlights are summarized from responses to the survey–more to be discussed in the breakout groups!
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AI in Chemistry Subdomains (Examples)

12

● Drug Discovery: AI can accelerate virtual screening, molecular docking, and de novo drug design, identifying 
potential therapeutics faster.

● Catalysis & Reaction Engineering: ML can predict catalyst performance and reaction mechanisms, 
accelerating sustainable chemistry innovations.

● Materials Chemistry: AI discovers new polymers, batteries, and semiconductors, optimizing properties with 
minimal experiments.

● Quantum Chemistry & Molecular Simulations: AI-driven force fields can enable long-timescale simulations 
with near-quantum accuracy; Enhanced sampling methods can generate rare event statistics at timescales of 
minutes and slower

● Cheminformatics & Structural Analysis: AI enhances spectral interpretation, molecular fingerprinting, and 
3D structure prediction (e.g., AlphaFold).
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Pratyush Tiwary, U Maryland (CHE)
Key Issue for Your Domain

● In computational chemistry, we often lack high-quality data at the timescales and system sizes 
required to capture rare events (e.g., slow protein conformations or RNA folding). This shortage 
of “right data” undermines many AI-driven methods, which then struggle with out-of-distribution 
generalization or extrapolation beyond the training set.

○ How do we ensure AI predictions remain physically valid in data-sparse settings?
○ What methods promote robust out-of-distribution performance and true extrapolation?
○ Chemistry needs precise environment. Which strategies best incorporate environmental 

factors (e.g., temperature, pH) into AI models for more realistic outcomes?

Domain-Specific Case Study/Example

● A recent success (Herron et al., PNAS 2024) predicted phase transitions in Ising and RNA 
systems without sampling near the critical point. By embedding thermodynamics into AI, we 
inferred critical exponents from sparse data—showcasing statistical physics-informed AI for 
emergent phenomena.

13NSF AI+MPS Workshop: March 24–26, 2025; MIT

I merge AI with statistical 
physics to simulate protein, 
crystals & RNA across 
otherwise unreachable 
timescales and with limited 
training data.
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Exemplar 1: GPU-enabled success in structure 
prediction and protein design
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Exemplar 2: Generative AI might transform 
molecular dynamics and ensemble prediction
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AI + CHE Priorities (preliminary)
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● Protein and Materials Design: Develop models that can design proteins, small molecules, and materials with 
desired functions that can be tuned for different environments (temperature, pH etc).

● Simulations: Leverage AI to accelerate computational chemistry simulations, improve the experimental accuracy 
of condensed phase simulations, advance enzyme designs, and create self-driving labs.

● Research Workflow Enhancement: Rethink the workflows and structure of chemistry research itself, including 
emphasizing open-ended hypothesis generation and transitioning to an idea-limited, versus resource-limited,  
mindset.

● Chemistry-aware ML: Train foundation models on higher-level "languages" and incorporate chemical and 
physical knowledge into the models. Develop a foundation model that integrates universal interatomic potentials, 
generative sampling, and property predictions.

● AI Standardization: Incorporate AI into standard procedures for chemical synthesis and predictive chemistry.

● Data and Publication Infrastructure: Work together as a community to build an infrastructure for obtaining large 
and high-quality simulation data from wave function theory and for standardizing the publication of AI methods.
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AI + CHE Questions to Consider (1)
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● Data Scarcity: How do we train AI when chemical data is limited or biased?
● Dynamics and environment : Chemistry is not just “what (i.e. one structure) ” but 

“what all (i.e. ensemble)”, “when” and “under what conditions”. How do we predict 
these?

● Physical Validity: How do we ensure AI-generated molecules and reactions obey 
real-world chemistry?

● Generalization & Extrapolation: Can AI predict *new* chemical matter and 
behavior beyond training data? 

Driving Question: How can the MPS domains best
capitalize on, and contribute to, the future of AI?  
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AI + CHE Questions to Consider (2)
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● What are flagship examples of AI+CHE that will help demonstrate where the field is 
now?

● Are the following subdomains the best way to categorize Chemistry?
○ Drug Discovery
○ Catalysis and Reaction Engineering
○ Materials Chemistry
○ Quantum Chemistry and Molecular Simulations
○ Cheminformatics & Structural Analysis

● What are the most important priorities and opportunities in AI+CHE in the next 5 years?

● How do we train new chemists to be competitive in the AI driven economy?

Driving Question: How can the MPS domains best
capitalize on, and contribute to, the future of AI?  
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Domain Overview: Materials Research

Andrew Ferguson, University of Chicago
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AI + Materials Research (DMR)
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● AI presents powerful tools and concepts to enable new paradigms in materials and molecular modeling, 
provide deeper understanding of structure-processing-property relations, and accelerate molecular and 
materials discovery.

● AI is used across DMR in a number of applications, including: 
○ Prediction, characterization, and modeling of molecule interactions,
○ Acceleration of existing workflows
○ Hypothesis generation
○ Advanced characterization
○ Multi-modal data analysis
○ More efficient explorations over high dimensional spaces using surrogate models
○ Uncertainty modeling

● Discovering optimal combinations of composition and processing for new polymeric formulations

● Powering self-driving laboratories integrating AI with automated robotics

● Incorporating strong physical priors into learning models that are critical for physical systems

These highlights are summarized from responses to the survey–more to be discussed in the breakout groups!
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AI in Materials Research Subdomains (Examples)
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● Materials chemistry: Machine learning interatomic potentials (ML-IAPs) have contributed to significant 
advancements in modeling, including enhanced model accuracy, robustness, development automation, 
capabilities for uncertainty quantification, and transferability.

● Small molecules: Huge strides have been made to use AI to predict properties (given dataset prerequisites) 
generate novel/valid molecules, and identify synthetic pathways.

● Molecule and materials discovery: These discoveries have been enabled by leveraging faster, low fidelity 
predictions to accompany medium fidelity simulations and high fidelity experiments.

● Molecule and materials design: Researchers are developing ML techniques with a focus on energy 
harvesting and storing and electronics applications

● Quantum, photonic, and optical materials: AI is revolutionizing the design, analysis, and optimization of 
complex optical systems, which has helped advance the development of engineered photonic materials, such 
as metasurfaces, photonic crystals, and novel metamaterials.
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Andrew Ferguson, UChicago (DMR + CHE)
Key Issue for Your Domain

● General strategies for incorporating hard constraints or informative physical priors 
into deep generative models

● Sustainability and energy cost of model training, efficient learning strategies (e.g., 
adapters, LoRA)

Domain-Specific Case Study/Example

● Multi-modal learning of a joint latent space of protein annotations and sequences to 
enable a “ChatGPT” for proteins with experimental wet lab validations
“Natural Language Prompts Guide the Design of Novel Functional Protein Sequences” 
https://doi.org/10.1101/2024.11.11.622734 

● Democratization of deep generative protein design, compositionality of different 
known facets protein function, scope for supernatural function via active learning?
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AI/ML for dimensionality 
reduction, enhanced 
sampling methods, 
collective variable 
discovery, active 
learning, rare event 
dynamics, active 
learning materials and 
molecular discovery, 
deep generative protein 
design

https://doi.org/10.1101/2024.11.11.622734
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Exemplar: Lila Sciences
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Exemplar: Lila Sciences
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AI + DMR Priorities (preliminary)
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● Database Development: Develop better community-supported databases for soft materials, like those that exist for 
hard materials

● Benchmarking and Standardization: Define a suite of standard and challenging benchmarks to compare new 
algorithms in enhanced sampling and molecular and materials design applications

● Robust AI: Develop interpretable domain-specific AI models, physics-informed neural networks, and uncertainty 
quantification techniques to advance our understanding of how to manipulate chemical and material systems

● Enhance Techniques and Lab Design: Combine molecular simulation methods with deep learning (DL) to develop 
neural network based potentials, enhance sampling techniques, and facilitate lab design and optimization. Use AI 
techniques such as generative AI and reinforcement learning to efficiently navigate high-dimensional design spaces 
and achieve unprecedented performance metrics

● Materials Discovery: Use AI for inverse design, enabling the rapid discovery of metasurfaces, photonic crystals, 
and other nanostructures with tailored optical properties. Explore chemical space through generative AI models and 
examine structure-process-property relationships to help identify impacts of disorder/defects. 

● Materials Research Impact on AI: Fostering a two-way relationship where materials challenges impact AI 
innovation
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AI + DMR Questions to Consider
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● …● What are flagship examples of AI+DMR that will help demonstrate where the field is now?

● What key subdomains are poised to make best use of AI in Materials Research?
○ Soft Materials – polymers, gels, rubbers, networks
○ Biomolecular Materials – proteins, peptides, nucleic acids
○ Hard Materials – catalysts, electronic and optical materials
○ Biomedical Materials – small molecule ligands and drugs, adjuvants, vaccines
○ Quantum Materials – substrates for qubits, quantum sensing and information
○ Automated Robotics & Self-Driving Labs

● What are the most important priorities and opportunities in AI+DMR in the next 5 years? 

● What are the key challenges to address in AI+DMR?

● What does DMR have in common with the other MPS disciplines when it comes to AI?

Driving Question: How can the MPS domains best
capitalize on, and contribute to, the future of AI?  
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Domain Overview: Mathematical Sciences

Soledad Villar, Johns Hopkins University

10 minutes presentation + 5 minutes Q&A
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AI + Mathematical Sciences (DMS)
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MATH for AI

● Theoretical understanding of AI: Math can be used to understand the properties and behavior of existing AI 
models (training optimization, generalization, finetuning, scaling laws, emergent behavior).

● AI Innovation: Math can inform the design of new machine learning models with useful properties, such as 
symmetries, conservation laws, fairness constraints, and multi-scale behavior. Other examples are 
continuous-time models like neural ODEs or diffusion models and invariant and equivariant architectures that 
capture known physics. This is specially important for AI for science.

AI for MATH

● Proof Generation/Validation: AI tools could potentially be used as “theorem prover copilots,” where the 
mathematician has a theorem or proof in mind, but has not worked out the details and asks the AI for 
assistance on modules. It can also helps formalize and discover mathematical proofs.

● Computational Mathematics: AI can help tackle previously intractable problems such as high-dimensional 
differential equations, statistics, control theory, and surrogate modeling.

These highlights are summarized from responses to the survey–more to be discussed in the breakout groups!
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AI in Mathematical Sciences Subdomains (Examples)
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● Mathematical Foundations: Models like DeepMind’s AlphaProof and AlphaGeometry are promising, as well 
as theorem prover co-pilots like Lean and SAT solvers.

● Combinatorics: Transformer models have been used for finding geometric combinatorial objects, and 
reinforcement learning is being used to discover counterexamples in combinatorics.

● Applied Mathematics: Neural networks are being used for solving PDEs. Generative models have been used 
for imaging and inverse problems.

● New mathematics inspired by AI problems. Mathematical problems inspired by AI produce new 
mathematics in different areas. For example high dimensional probability, invariant theory, optimization.

● We’ll hear more examples from you during our breakout session
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Soledad Villar, Johns Hopkins (DMS, computational math, modl)

Key Issue for Your Domain

● Mathematical research in AI:
○ Explain the behavior of AI models (e.g. training dynamics, generalization 

properties of trained models, sample complexity, etc).
○ Use mathematical principles to design machine learning models (e.g. group 

equivariant models implemented via representation theory or invariant theory).
○ Use of AI to prove theorems, verify proofs, or make conjectures.

Domain-Specific Case Study/Example

● My work uses techniques from algebra (invariant theory, galois theory, representation 
theory) to design machine learning models that are (approximately) 
invariant/equivariant with respect to group actions. 

● Examples: machine learning on point clouds (applications to cosmology/computer 
vision), graph neural networks, equivariant self-supervised learning.

● Also work in mathematical theory of deep learning (eg. generalization guarantees).
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Equivariant machine 
learning, graph neural 
networks, mathematical 
theory of deep learning

Photo of you
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AI + DMS Priorities (preliminary from questionnaire)
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● Mathematical theory for AI: Mathematical theory to explain learning. Generalization, optimization, transfer 
learning, finetuning, scaling laws, emergent behavior, generative AI.

● Mathematics Verification and Discovery: Use symbolic AI for verifying and discovering mathematics, 
including generating proofs.

● Problem Solving Agents: Develop domain-specific AI agents that assist in solving problems across areas of 
formalization of mathematics, especially those that are beyond reach of current techniques. Example: RL for 
combinatorics.

● Mathematical foundations of AI+Science: Mathematical principles to design AI tools to be used in other 
domains such as physics, chemistry, and biology. 

● Robust and Trustworthy AI: Build AI tools that emphasize safety, security, and privacy. Can we have reliable 
uncertainty quantification of AI models? Neurosymbolic AI was mentioned in the questionnaire as a possible 
direction.

● Interpretable/explainable AI: For some applications, like medical applications it is important to be able to 
explain the decisions that AI models make. 
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Examples of math-focused NSF programs 
NSF Tripods (Transdisciplinary Research In Principles Of Data Science)

Artificial Intelligence, Formal Methods, and Mathematical Reasoning (AIMing)

Mathematical Foundations of AI (MFAI)

NSF-Simons Mathematical theory of deep learning (MoDL)

  Driving Question: As researchers in the mathematical sciences, 
what programs do you want to see put forward by NSF MPS?  

32
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AI + DMS Questions to Consider
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● What are flagship examples of AI+DMS that will help demonstrate where the field is now?

● What is the best way to categorize Mathematics Research and AI sub domains?

● What are the most important priorities and opportunities in AI+DMS in the next 5 years? 

● What are the key challenges to address in AI+DMS?

● What does DMS have in common with the other MPS disciplines when it comes to AI?

Driving Question: How can the MPS domains best
capitalize on, and contribute to, the future of AI?  
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Domain Overview: Physics

Jesse Thaler, MIT

10 minutes presentation + 5 minutes Q&A
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AI + Physics (PHY)
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● Theoretical Calculations:  AI is being used to accelerate quantum field theory calculations and discover new 
structures in mathematical data

● Data Analysis: Deep learning has enabled high-dimensional statistical analyses, enabling the use of much 
more information than ever before without having to resort to summary statistics. Increasingly, AI is being used 
as a primary analysis tool, including to search for anomalous features in datasets.

● Noise Mitigation: AI has been used to improve the detection and removal of noise artifacts in data.

● Simulations: Across physics, AI has been used to revolutionize the use (and reuse) of simulations.

● Experimental Design and Optimization:  Neural network-based computational methods are impacting 
computation design, including protocol design and sampling.  AI is also helping to advance multiparameter 
optimization and has provided essential control functions for experimental protocols.

● Robust and Interpretable AI:  Physicists are developing methods to understand and improve AI, including the 
necessary precision for scientific applications.

These highlights are summarized from responses to the survey–more to be discussed in the breakout groups!
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● Quantum Physics: Advanced multiparameter optimization achieved state-of-the-art decoding performance in 
quantum error correction experiments, which exemplifies how AI can enhance the reliability and effectiveness 
of quantum computing systems.

● Atomic, Molecular, and Optical Physics: Reinforcement learning (RL) has been used to design quantum 
control protocols for atom interferometry. Unlike optimal control, the training can easily be performed model 
free and in the lab using experimental observation and feedback to determine the reward values.

● Particle Physics: Experimental collaborations have used AI to help process and analyze huge datasets, which 
allow researchers to accelerate simulations, build powerful architectures for event and jet classification, 
conduct anomaly detection for new physics searches, and make more sensitive and precise measurements.

● Gravitational Wave Physics: AI has been used to remove noise from time-series data and detect signals 
faster and at lower costs. A promising approach to measuring the stochastic gravitational wave background is 
simulation-based Inference, which allows for performing inference without an analytical likelihood.

● Biophysics: AI is becoming central to organizing and analyzing large datasets and has become a lens through 
which to view learning in living matter.

AI in Physics Subdomains (examples)
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Personal Perspective on AI + (Particle) Physics
The Standard Story:

● Shallow machine learning and low-dimensional statistics have a long history in particle physics

● Now, we are revisiting our field through lens of deep learning and high-dimensional statistics

● Key paradigm of simulation-based inference enabled by vast data sets and trustable simulations

+ AI

This standard story is true!  SBI and its extensions are driving immense progress, 
and there is much more to come!  But is that why I keep working on AI?
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An invitation to dream big!  What if AI doesn’t 
just give an approximation to rigorous results 

but yields something even better?

Beyond the Standard Story:
● AI/ML (and mathematics, statistics, computation more generally) 

allows a reframing of physics-specific questions in a more 
universal language

○ E.g.  Question (1970s):  What calculations are “allowed” 
in perturbative quantum field theory?

○ Answer (2020s via 1780s):  Optimal transport!

● AI/ML allows a shift from solving problems algorithmically to 
specifying problems as optimization/search tasks

○ E.g.  “Solving” amplitude bootstrap with transformers

Personal Perspective on AI + (Particle) Physics
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Towards the “Physics of AI”
The Standard Story:

● Progress in computation and information theory has long been intertwined with 
progress in the mathematical and physical sciences

○ E.g. statistical mechanics, quantum computers 

● Physical systems are learning systems (2024 Nobel Prize!)

○ E.g. diffusion and classical mechanics as generative models

● Neural networks can be analyzed using physics tools, since they share many 
similarities with quantum many-body systems and quantum field theories

Beyond the Standard Story:
● What if the next AI advance doesn’t come from mimicry of a physical systems 

(or the brain) in silico, but from a new kind of physical learning device?

○ Cf. quantum mechanics → transistor (well before quantum computers!)
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AI + PHY Priorities (preliminary)
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● Theoretical Frameworks for AI Use: Establish theoretical frameworks to characterize how and when AI will 
accelerate discovery, including understanding the limits of AI and how its predictions can be trusted, especially 
using uncertainty quantification.

● Experiment Development, Design, and Automation: Integrate AI into experiment development and design, 
including developing reinforcement learning techniques for operations.  Automation of experimental control could 
have a large impact in efficiency/uptime of operations, especially for advanced and next generation systems.

● Interpretable AI: Build models that are multi-use and interpretable, which will allow researchers to have an 
intuitive understanding of how an AI tool is manipulating data and give assurance of the mathematical rigor used 
by the tool.

● Data Analysis: Combine the ability of AI to process vast datasets with the human ability to scrutinize puzzling 
features in physical data.

● Science of AI: Develop a physics-based theory of complex AI systems and their emergent properties toward a 
multidisciplinary “Science of AI” effort.
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AI + PHY Questions to Consider
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● What are flagship examples of AI+PHY that will help demonstrate where the field is now?

● The core research areas in NSF PHY are as follows.  Is this the right organization for the AI white paper?  
How to ensure coverage across all of these areas?

○ Atomic, Molecular and Optical Physics
○ Elementary Particle Physics
○ Gravitational Physics
○ Nuclear Physics

● What are the most important priorities and opportunities in AI+PHY in the next 5 years?
● What are the key challenges to address in AI+PHY?

○ Do these answers differ between large-scale experiments, small-scale experiments, and theory?

● What does PHY have in common with the other MPS disciplines when it comes to AI?

Driving Question: How can the MPS domains best
capitalize on, and contribute to, the future of AI?  

○ Particle Astrophysics and Cosmology
○ Physics of Living Systems
○ Plasma Physics
○ Quantum Information Science
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Coming Up Next…
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Today’s Schedule (Monday)
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9:00–9:30 am: Welcome and Overview

9:30–10:30 am: Theme Overviews
● Interdisciplinary Research: Opportunities and Challenges: 

Lars Ruthotto
● Interdisciplinary Research: Resources Needed: Andrew Ferguson
● Education & Workforce Development: Yuan-Sen Ting
● Responsible AI: Pratyush Tiwary

10:30–11:00 am: Break

11:00 am–12:30 pm: Domain Overviews
● AST: Yuan-Sen Ting
● CHE: Pratyush Tiwary
● DMR: Andrew Ferguson
● DMS: Soledad Villar
● PHY: Jesse Thaler

12:30–2:00 pm: Lunch

2:00–5:30 pm: Theme Breakouts
● Interdisciplinary Research: Opportunities 

and Challenges: Room 801 North (here)

● Interdisciplinary Research: Resources 
Needed: Room 801 South

● Education & Workforce Development: 
Room 804

● Responsible AI: 
Room 812


