

Development of vertical excursion FFA

J.B. Lagrange ISIS, RAL, STFC

Vertical excursion FFA (VFFA)

- Invented in 1955, rediscovered in 2013.
- Orbit moves vertically when the beam is accelerated.
- ©Constant path length over whole momentum range (zero momentum compaction factor for all orders).
- Sochronism for ultra-relativistic energies (slippage factor only dependent of Lorentz gamma, like a Linac).

Motivation

• FFAs:

- Flexibility: Beam pulse only controlled by RF, allowing fast and sophisticated patterns
- Sustainability: energy efficient operation, enhanced with SC or permanent magnets, reduced operating cost
- Reliability: DC power supply simple and cheap, low failure rate and higher redundancy

VFFA:

- Rectangular magnet considered, potentially easier to manufacture than spiral HFFA
- Tall magnet, but smaller footprint than HFFA

Magnetic field in VFFA

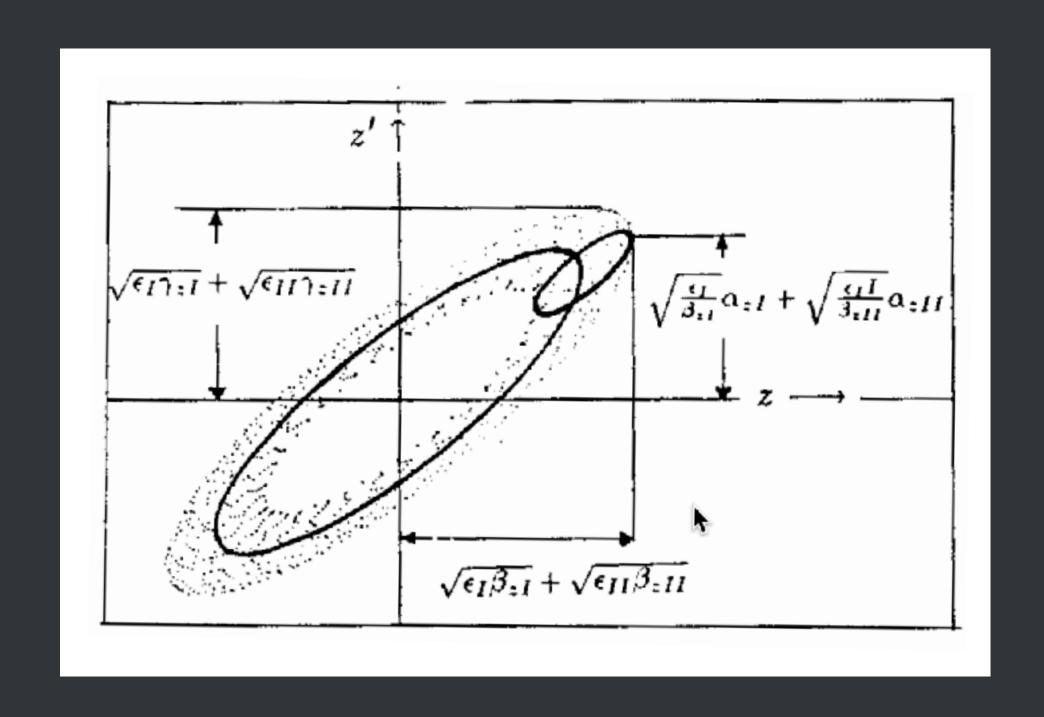
Exponentially increasing magnetic field to satisfy zero-chromatic conditions.

[T]

х о х х о х х о

Cartesian coordinates x (hor.),y (vert.),z (long.)

$$\begin{cases} B_x(x,y,z) = B_0 e^{m(y-y_0)} \sum_i b_{xi}(z)(x-x_0)^i \\ B_y(x,y,z) = B_0 e^{m(y-y_0)} \sum_i b_{yi}(z)(x-x_0)^i \\ B_z(x,y,z) = B_0 e^{m(y-y_0)} \sum_i b_{zi}(z)(x-x_0)^i \end{cases}$$


Expansion of the field in the magnet shows alternance of normal and skew components.

VFFA Optics

$$z_{env} = \begin{pmatrix} x_{env} \\ x'_{env} \\ y_{env} \\ y'_{env} \end{pmatrix} = \begin{pmatrix} \sqrt{\varepsilon_I} \sqrt{\beta_{xI}} + \sqrt{\varepsilon_{II}} \sqrt{\beta_{xII}} \\ \sqrt{\varepsilon_I} \sqrt{\gamma_{xI}} + \sqrt{\varepsilon_{II}} \sqrt{\gamma_{xII}} \\ \sqrt{\varepsilon_I} \sqrt{\beta_{yI}} + \sqrt{\varepsilon_{II}} \sqrt{\beta_{yII}} \\ \sqrt{\varepsilon_I} \sqrt{\gamma_{yI}} + \sqrt{\varepsilon_{II}} \sqrt{\gamma_{yII}} \end{pmatrix}$$

- Tunes obtained from Eigenvalues of computed transfer matrices
- Beam envelope: beta-functions from Willeke-Ripken procedure

VFFA test ring

Proof-of-principle ring (3-12 MeV proton) to be built by 2027.

Coil configuration design

- ©Coil designed based on Reverse Biot-Savart law
- ©Biot-Savart law: $B = \frac{\mu_0}{4\pi} \int \frac{\overrightarrow{J} \times \overrightarrow{r}}{|r|^3}$
- Starting from a field model in the form of $B_y = B_0 e^{m(y-y_0)} g(z)$
- Passing in the frequency domain $B_y = \left(\sum_i a_i e^{j\omega_{yi}y}\right) \left(\sum_k b_k e^{j\omega_{zi}z}\right)$
- The current density Jy and Jz of 2 infinite parallel current sheets separated by a gap ±g are

$$J_z = \sum_i \left(a_i e^{j\omega_{yi}y} \sum_k b_k e^{j\omega_{zi}z} e^{g\sqrt{\omega_{yi}^2 + \omega_{zi}^2}} \right) \quad \text{and} \quad J_y = \int \frac{\partial J_z}{\partial z} dy$$

 \bigcirc A 2D-FFT of B_y can then compute the current density.

First prototype coil configuration

Prototype parameters:

- Normal conducting with SC winding method
- •1 m-long magnet
- Normalised gradient m=1.3 m⁻¹.
- © 0.6 m vertical good field region
- © 22 cm full gap size
- Coil made of 50 contours, each contour made of 16 turns
- 4.7 mm minimum spacing (centre coil to centre coil)

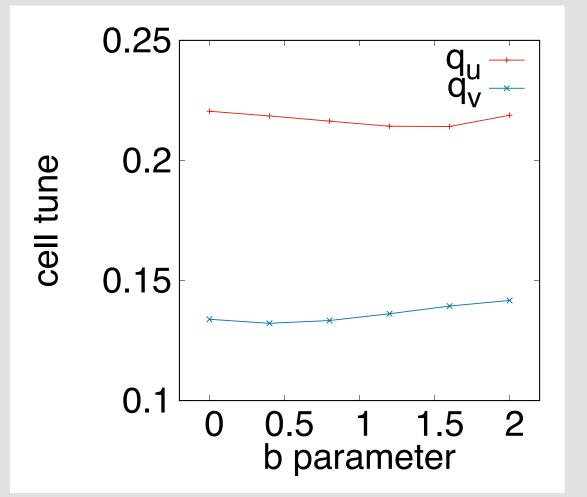
Optics in more realistic magnet model

- Magnetic field model become available and optics is calculated based on 3-D field map.
- FODO cell lattice is taken to see how accurately magnetic field is created with realistic coil configuration.
- Tune should be constant during acceleration (scaling optics). Not fixed at the current magnet design.

Lattice to check magnet accuracy

Lattice baseline


JB Lagrange



Double coil design

COD corrector

Several cm orbit movement with marginal tune change

High intensity effects

space charge tune shift

Space charge tune shift from a simple model (uniform charge distribution, no longitudinal bunch structure): $\Delta Q_u \sim -0.07$, $\Delta Q_v \sim -0.30$

Apply formula of tune shift per ring for decoupled optics:

$$\Delta Q_u = -\frac{n_t r_p R/Q_u}{\pi a (a+b) \beta^2 \gamma^3} = -0.23$$

$$\Delta Q_v = -\frac{n_t r_p R/Q_v}{\pi b (a+b) \beta^2 \gamma^3} = -0.43$$

Reasonable tune shift, but needs more theoretical understanding.

Summary

- Development of VFFA as a proton driver of a future spallation neutron source
- Proof of principle ring (3-12 MeV proton) planned by 2027
- ©Coil-based prototype magnet designed

Thank you for your attention

