Operational experience with the RIKEN RIBF accelerator complex

RIKEN Nishina Center for Accelerator-Based Science Accelerator Group

Hiroki Okuno

Goal of RIBF

- Great expansion of the nuclear chart (new 1000 kinds of isotope, exotic nuclei)
- Challenge to solve the big puzzle of element genesis (r-prosess = U-synthesis)
- Promotion of industrial and biological applications

- RI beams are generated by fragmentation or fission of high-speed heavy ion beams.
- Accelerator complex is required to produce high speed heavy ion beams with high intensity.

RIBF accelerators

Y. Yano, NIM B261 (2007) 1009.

Acceleration modes

Accelerate ALL ions (from H_2^+ to U), up to 70% of the light speed, in CW mode 3 injectors + 4 booster ring cyclotrons

1) AVF-injection mode (< 440 MeV/u) : d, He, O, ...

2) Variable-energy mode (< 400 MeV/u) : Ar, Ca, Zn, Kr, ...

3) Fixed-energy mode (345 MeV/u) : Xe, U ...

Specifications of RIBF ring cyclotrons

	RRC (1986~)	fRC	IRC	SRC
K-number (MeV)	540	700	980	2600
R _{inj} (cm)	89	156	277	356
R _{ext} (cm)	356	330	415	536
Weight (tons)	2400	1300	2900	8300
Sector magnets	4	4	4	6
Number of trim coils (/ main coil)	26	10	20	4 (SC) 22 (NC)
Trim coil currents (A)	600	200	600	3000 (SC) 1200 (NC)
RF resonators	2	2+FT	2+FT	4+FT
Frequency range (MHz)	18~38	54.75	18~38	18~38
Acceleration voltage (MV)*	0.28	0.8	1.1	2.0
Turn separation (cm)*	0.7	1.3	1.3	1.8

Challenging

*uranium acceleration

SC : superconducting, NC : normal conducting, FT : flattop resonator

History of accelerator performance

Our goal: $1p\mu A$ (6 x 10^{12} #/s) for all elements

• It is very tough business to operate the accelerator complex where four cyclotrons are connected in series. (Inj./ext. four times, energy matching between the cyclotrons and single turn extraction)

• Space charge effect is very intense in the low energy ring cyclotron (RRC)

The RRC cavity was remodeled.

Current limit according to Baartman's paper (Proc. of Cyclotrons2013 WE2PB01.

- Heavy beams with ~kW power easily give damages the critical parts such as EDCs.
- dE/dx of uranium beam is about 1000 times higher than of that of protons at 11 MeV/u.

- Multi-step charge stripping should be avoided, and thickness of the charge stripper should be as thin as possible.
- Charge stripper Ring will be installed! Concept of stripper ring

The **bunch structure must be preserved** to match to acceptance of the subsequent cyclotrons (e.g., 18.25 MHz at RIBF).

H. Imao

Charge stripper ring (CSR)

Design of CSR at 50 MeV/u

H. Imao

Summary

- RIBF accelerator complex
 - The most intense heavy ion facility based on cyclotron.
 - Goal: More than 1 pµA of uranium beam with the energy of 345 MeV/u
- Successful operation for 15 years
- Lesson learnt from the operational experiences.
 - It is very tough business to operate the accelerator complex where four cyclotrons are connected in series.
 - Transmission: 20%→ 50%
 - Space charge effect is very intense in the RRC
 - Increase the space charge limit in the low energy cyclotron of RRC
 - Remodel of the RRC cavity to get higher voltage
 - kW heavy ion beam easily gives a damage to the critical parts such as EDC.
 - We should develop fact beam interlock system for machine protection.
 - Multi-step charge stripping should be avoided, and thickness of the charge stripper should be as thin as possible.
 - Charge stripper Ring will be installed.