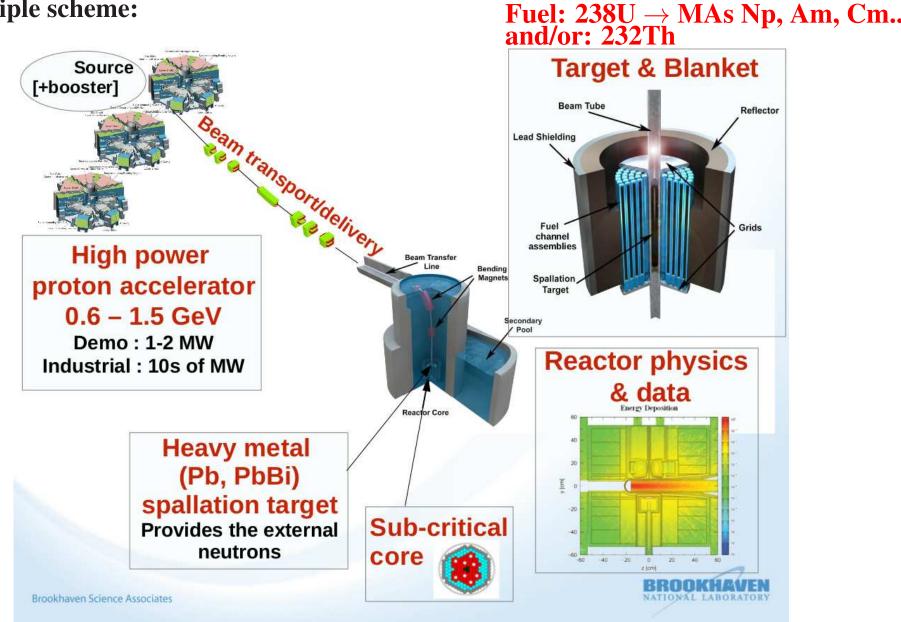
HIGH POWER FIXED-FIELD RING METHODS IN ADS-REACTOR APPLICATION

François Méot Brookhaven National Laboratory

Snowmass'21 Workshop, PSI, 7-9 Sept. 2021

Contents

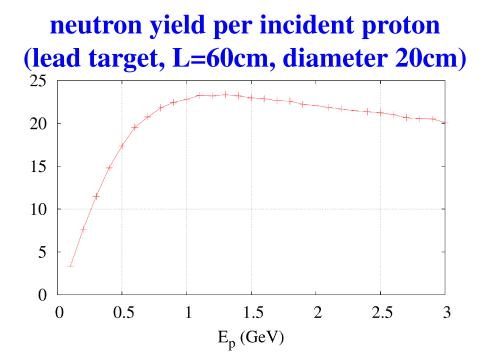

1	SUBCRITICAL REACTOR FACILITY	3
2	BEAM PARAMETERS	4
3	ACCELERATOR TECHNOLOGIES FOR MULTI-MW BEAMS 3.1 Push Cyclotron Technology	9 11
	3.2 Fixed-Field Alternating Gradient Circular Accelerators	
	3.2.1 MURA Scaling FFAGs, 1950s	
	3.2.2 Proton and ADS R/D, 2000s	19
	3.2.3 Linear FFAG Concept, Prototyping	
	3.2.4 Linear FFAG: Proton Driver Design Studies	
4	CHALLENGES	31
5	COMMENTS	32
6	CONCLUSION	36

Snowmass'21 Workshop, PSI, 7-9 Sept. 2021

SUBCRITICAL REACTOR FACILITY 1

Primary interest (Roger Barlow's presentation): incineration of long-lived minor actinides from reactor park. Can not compete as "Energy Amplifier".

• Principle scheme:


2 BEAM PARAMETERS

 \bullet Required beam power $P_{\rm B}$ to generate the necessary source-neutron rate yielding $P_{\rm th}$ reactor power :

with beam energy $\mathbf{E}_B \approx 1$ GeV, a handy estimate is

$$P_B \approx \frac{1}{2}(1 - k_{\rm eff}) P_{\rm th}$$

$$P_B = E_B \frac{P_{\rm th}}{f E_f} \frac{(1 - k_{\rm eff})}{k_{\rm eff}} \begin{cases} k_{\rm eff} = \begin{cases} \text{neutron multiplication} \\ \text{factor of the reactor} \end{cases} = \frac{n \text{ produced}}{n \text{ absorbed}} \approx 0.95 \sim 0.98 \\ E_f = \text{energy released per fission} \approx 200 \text{ MeV} \\ f = \text{fraction of neutrons causing fission} \overset{1GeV-p}{\approx} \frac{20 \text{n/incident p}}{2.5 \text{n/fission}} \end{cases}$$

• Reactor's k_{eff} is central to the accelerator parameters.

The closer to 1 (*closer reactor core to critical*), the lower the beam power needed.

• Power demand by accelerator system :

$$P_A = \frac{P_B}{\eta_A} \approx \frac{1 - k_{\text{eff}}}{2\eta_A} P_{\text{th}}$$

 η_A = accelerator's plug-to-beam power conversion efficiency

For the record, plug-to-beam efficiency (facilities not optimized in that aim) :PSI : 13%[M. Seidel, 2015]SNS : 8%[J.Galambos, Priv. comm., 2015]ESS goal: 18%

- Typical figures -					
<u>Reactor</u> <u>Proton beam</u>					
	thermal power	$\mathbf{k_{eff}}$	Energy / Current / Power		
Demo transmuter MYRRHA:	50-100 MW-th	≈ 0.95	600 MeV / 4 mA / 2.4 MW		
EFIT/industrial transmutation:	400 MW-th	≈ 0.97	800 MeV / 20 mA / 16 MW		
China's demonstrator program:	1000 MW-th		1.5 GeV / 10 mA / 15 MW		

BEAM PARAMETERS (CONT'D)

ADS-Reactor systems are still in early development stage, with many unresolved questions, including [3]:

- an integrated Accelerator-Window[-less]-Target-Blanket system, in which beam current connects to target cross-section, which in turn determines
 - neutron loss in target volume,
 - shielding requirements upstream of target (beam delivery line: hardened beam line components),
 - current density (A/cm²) at the window, possibly plasma-window,
 - blanket size.

Typical required beam current stability $\pm 1\%$;

- beam energy
 - can be traded against beam current for a given power, thus impacting on all of the above: smaller target cross section etc.
 - determines energy of proton knock-on neutrons which
 - * if beam points downwards: traverse bottom shield, contaminate ground,
 - * beam points upwards: cause sky shine.

Typical required beam energy stability $\pm 2\%$;

BEAM PARAMETERS (CONT'D)

- beam power determines fluency of high energy neutrons and leakage protons: impact on fuel and structural material survivability.
- beam shape and size correlated to target, window aperture: circular or rectangular (raster scan or else), typically several 10s of millimeters.
 Typical required size stability ±10%.
- Beam time structure:
 - pulsed: possibly if linac p-driver; for sure from synchrotron \sim 50s-Hz mitigate thermo-mechanical stress
 - CW for multi-MW: from cyclotron, bunch trains possibly from linac.
- Beam reliability is paramount:
 - core power drops down to decay heat levels each time the beam is lost, causing thermal stress induced on core
 - getting reactor back to nominal power takes hours.

BEAM PARAMETERS (CONT'D)

Add to that, possibly,

• Multiple-beam configurations.

Ex.: case of Th based blanket,

- need initial excess of spallation neutrons as $k_{\rm eff} \ll 1$
- \Rightarrow 3 beam tubes, Φ 15 cm in Ref. [7],

- with time, beam power needed decreases as concentration in U-233, thus $k_{\rm eff},$ increases

• Re-visit the question of ion species ?

Cf. Ref. [6] study: 7Li beam, 0.3 A GeV, and Be core target: smaller accelerator, lower plug-power?

• Modular ADS-Reactor waste burner? ~100 MW-th range, beam power ~10-fold lower, on-site avoids transportation.

ACCELERATOR TECHNOLOGIES FOR MULTI-MW BEAMS 3

Separated sector cyclotron

Paul Scherrer Institute, first beam 1973, 590 MeV, 1.3 MW CW beam, upgrade on the way to 1.8 MW.

- Normal conducting proton linear accelerator LANSCE 800 MeV n science center linac, first beam 1972. Ran in 1 mA / MW range in the 1980s, 120 Hz repetition rate, DC 7.5%.
- Superconducting linear accelerator

SNS 1 GeV n science linac at ORNL, beam 2006,

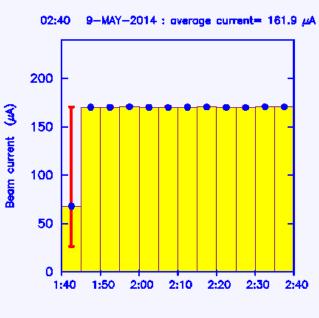
today beam power 1.2~1.4 MW.

60 Hz-pulsed, DC ~6%. Accelerates H- for stripping injection into accumulator ring.

Reference : US ADS White Paper (2010)

Alternative approaches to high power include :

• Synchrotron technology,


Potential for \approx 1 MW, for \approx 1 GeV proton beam, limited by pulsed operation, few 10s of Hz, rather large ring.

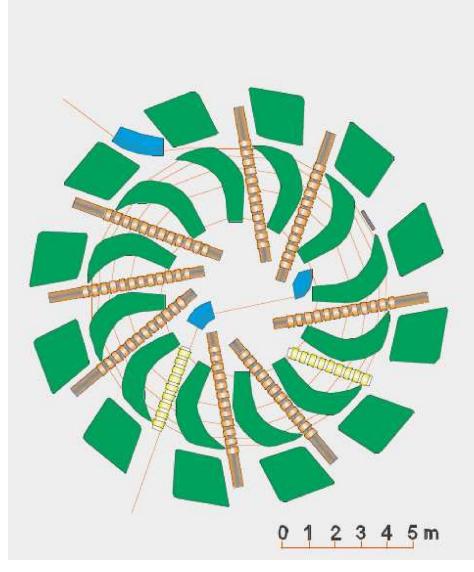
Ex.-1 : ISIS rapid-cycling synchrotron, RAL, UK.Running since 1984,50 Hz, 800 MeV, 200 kW beam power

Ex.-2 : Neutrino Factory, proton driver, energy 3 \sim 5 GeV optimal, 4 MW, 50 Hz rep. rate \rightarrow parallel synchrotron schemes.

- Fixed Field Alternating Gradient (FFAG) accelerators
 - FFAGs potentially have repetition rate in 100s of Hz range synchro-cyclotron.

- With further development, FFAG technology may also demonstrate applicability in the 5-10 MW power range.

Beam current at ISIS TS1

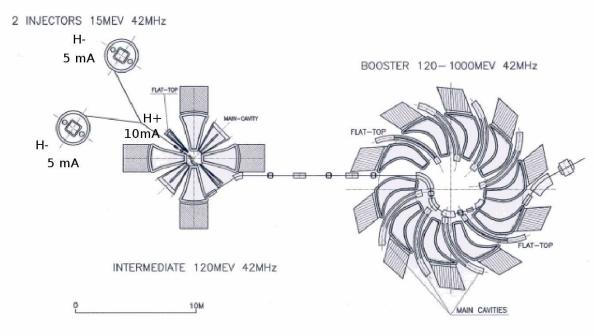

3.1 Push Cyclotron Technology

I'll be short, here:

- Limitations of High-Power Cyclotrons, C. Baumgarten, yesterday;
- Luciano Calabretta's talk, today.
- Just two instances, to transition to FFAGs...

Pushing PSI technology to 10 MW (1/2)

[1997, Th.Stammbach et al]



parameters	1 GeV Ring	PSI Ring
Energy	1000 MeV	590 MeV
Injection energy	120 MeV	72 MeV
Magnets	12 (B _{max} = 2.1 T)	8 (B _{max} = 1.1 T)
Cavities	8 (1000 kV)	4 (800 kV)
Frequency	44.2 MHz	50.63 MHz
Flat tops	2 (650 kV)	1 (460 kV)
Injection radius	2.9 m	2.1 m
Extraction radius	5700 mm	4462 mm
Number of turns	140	186
Energy gain at extraction	6.3 MeV	2.4 MeV
DR/dn	11 mm	5.7 mm
Turn separation	7 s	7 s
Space charge limit	10 mA	2.2 mA (3.0 @ 4 MV/turn)
Beam power	10 MW	1.3 MW

Note : redundancy of resonators opens up the way to compensation of failed resonator. Pushing PSI technology to 10 MW (2/2) (CERN/AT/95-44 / Mandrillon)

- Energy 1-1.2 GeV, beam current 10-15 mA CW, 10 MW
- Ingredients :
- more cells for more RF (this reduces space-charge effects & losses, $\sim N^3$),
- reduced $\hat{B} = 1.8 \,\mathrm{T}$ for larger radius.

This favors turn separation at extraction $\Delta R_{\text{extraction}} \propto R_{\text{extract.}} \Delta E_{\text{turn}} / \beta^2 \gamma^3$

- MAIN RING :
- 16 m diameter
- 10 cells for more RF
- 9 mm turn separation at extraction based on $\begin{cases} large \Delta E \text{ at extraction} \\ harmonic cavities} \\ low field : \hat{B}=1.8 \text{ T} \end{cases}$
 - Magnet aspects :
 - Maximum field 1.8 T
 - Power 2.7 MW
 - Total weight 3200 tons

• RF aspects, for 1 GeV/10 mA beam :

- 3 to 6 MeV/turn from injection to extraction
- 2 harmonic cavities for space charge compensation
- Per cavity : 2.1 MW to be delivered, 1.5 MW beam

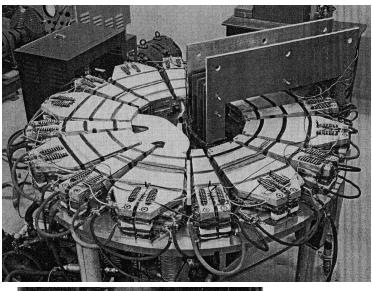
power + 0.6 MW cavity loss, 3 MW electrical power

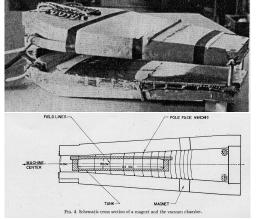
RIKEN SC Cyclotron: K2600

See "Operational experience with the RIKEN RIBF accelerator complex", Hiroki Okuno, yesterday.

- Diameter 19m, 3.8T field, 6 RF cavities
- first beam 2006

- **Power balance at the RIKEN cyclotron:**
- Helium cooling system : 1MW
- Power supplies for SC coils (main coils and superconducting trim coil) : 0.2 MW
- PS for warm trim coil : 1MW
- PS for injection/extraction elements : 1MW
- RF system : 1.5 MW
- Total : 4.7 MW

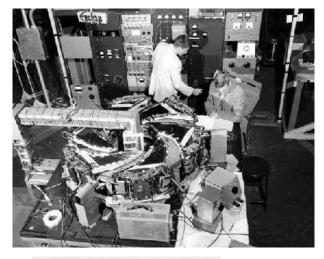

3.2 Fixed-Field Alternating Gradient Circular Accelerators

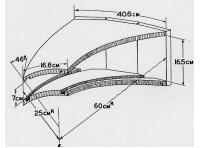

- I'll be quick the next 15 slides:

- See this quick tour of the topic as a guidance, for whoever is interested in digging into one or the other of the techniques addressed.

3.2.1 MURA Scaling FFAGs, 1950s

• The first model, radial sector FFAG, Mark II. First operation March 1956, University of Michigan.


F magnet, positive field, radially focusing.


FFAG ring parameters

$E_{inj} - E_{max}$	keV 25	5 - 400	{ small size, easy to build field not too low, ms lifetime PSI, 7-9
orbit radius (${\cal C}/2\pi$)	m 0.3	4 - 0.50	, P.
Optics			SI,
lattice	I	$\frac{D}{2}F\frac{D}{2}$	7-9
number of cells	-	8	16 magnets & 4.41 deg. drifts 🔗
field index K		3.36	g/r = Cst & pole-face windings
$ u_r \mid u_z$	2.2-	3 / 1-3	202
Magnet	radial s	sector	$B = B_0 (r/r_0)^K F(\theta)$
Acceleration	Induc	tion	TUNE DIAGRAM
rep. rate	Hz a fe	w 10s	
SCALING	Bz (Gauss)	CON	STANT TUNES :
600	20000		
500	- 15000	-	
400	5000	0.4	
(E) 300	0	Q_V	
≻ 200	5000	0.3	
		0.2	
0 100 200 300 400 X (cm)	500 600	0.1	
A (Cin)			

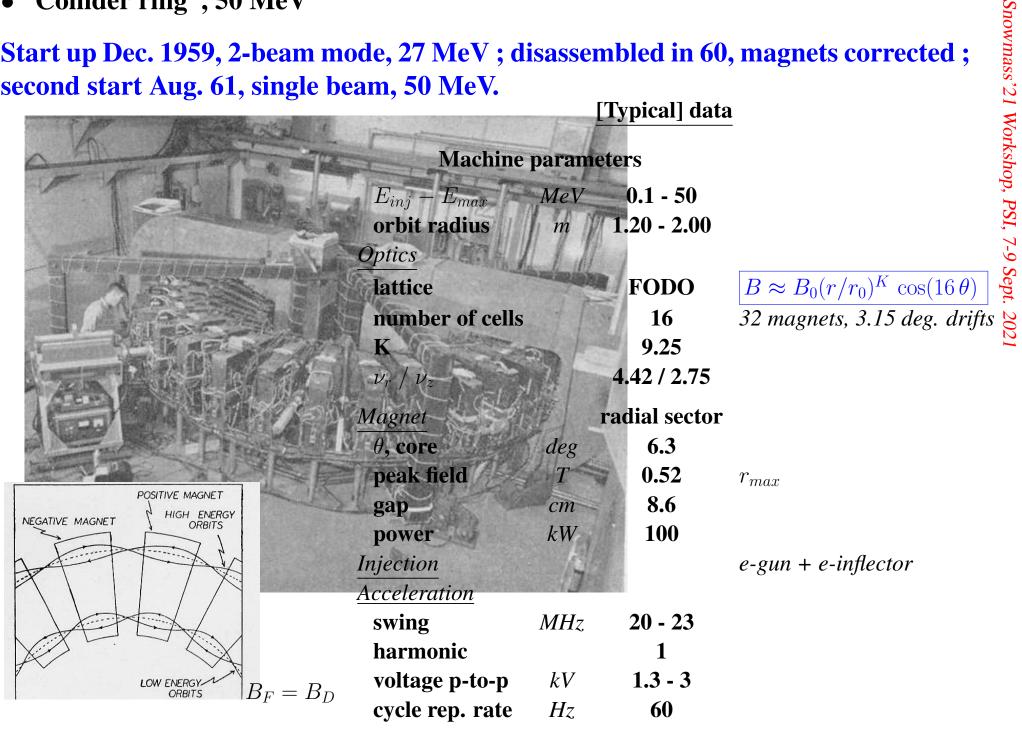
• Second model, spiral sector FFAG, Mark V

First operation Aug. 1957 at the MURA Lab., Madison.

Logarithmic spiral poles

Spiral FFAG parameters

$E_{inj} - E_{max}$	keV	35 - 180	{ reasonable size
orbit radius	m	0.34 - 0.52	C magnetis 5, PSI
E_{tr} / r_{tr}	keV / m	155 / 0.49	$\left\{\begin{array}{l} reasonable \ size \\ magnets \end{array} \right. \\ \left\{\begin{array}{l} RF \ exprmnts \\ at \ \gamma_{tr} \end{array} \right. \\ \left.\begin{array}{l} 2021 \end{array} \right. \\ \left. $
Optics			t. 20.
lattice		spiral sectors	21
number of sectors		6	,
field index K		0.7	<pre>{ pole-face windings tunable 0.2-1.16</pre>
flutter $F_{\rm eff}$		1.1	tuning coils / 0.57 - 1
$ u_r \ / \ u_z$		1.4 / 1.2	tunable
Magnet: spiral sector		$B = B_0(\frac{r}{r_0})^K F($	$(\ln \frac{r}{r_0}/w - N\theta)$

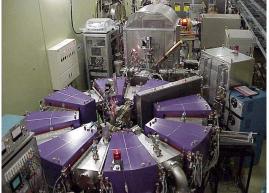

Acceleration

betatron and RF

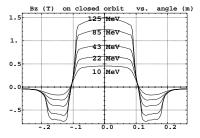
Snowmass'21 We

• "Collider ring", 50 MeV

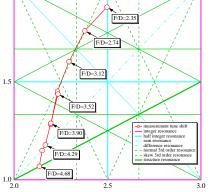
Start up Dec. 1959, 2-beam mode, 27 MeV; disassembled in 60, magnets corrected; second start Aug. 61, single beam, 50 MeV.


Snowmass'21 Workshop, PSI, 7-9

3.2.2 Proton and ADS R/D, 2000s

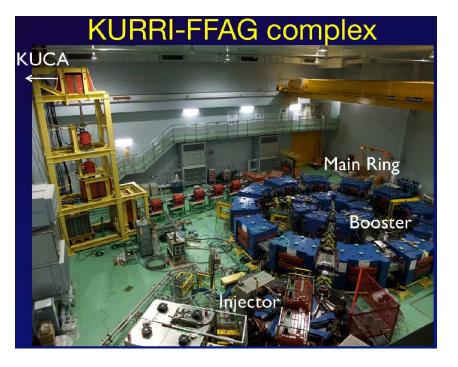

• 1999 - mid 2000s, working frame : Neutrino factory R&D

Interest of the FFAG method : Fast acceleration (short lived muons - and/or high average I), strong focusing (mitigates space charge effects), very large acceptance (beam may be big)


POP FFAG - First beam Dec. 1999

$E_{inj} - E_{max}$	keV	50 - 500
orbit radius	m	0.8 - 1.14
lattice / K		DFD $ imes$ 8 / 2.5
$ u_r \mid u_z$		2.2 / 1.25
RF swing	MHz	0.6 - 1.4
voltage p-to-p	kV	1.3 - 3
cycle time	ms	1
2.0 [FD=2.3] [FD=2.74]		

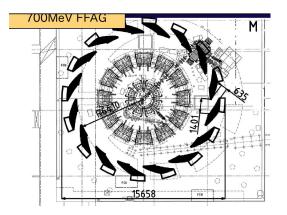
Medical application program 150 MeV radial sector FFAG - startup 2003

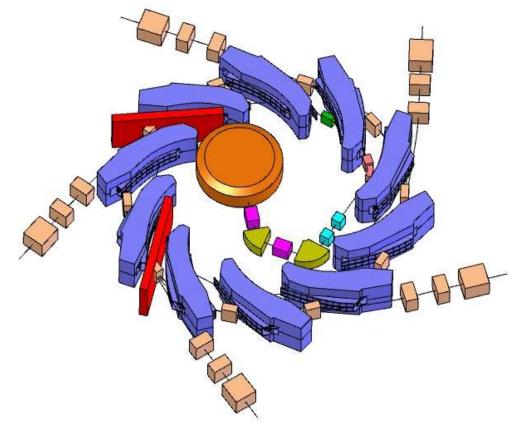


$E_{inj} - E_{max}$	MeV	12 - 150
orbit radius	m	4.47 - 5.20
lattice / K		DFD $ imes$ 12 / 7.6
$ u_r \mid u_z$		3.7 / 1.3
RF swing	MHz	1.5 - 4.5
voltage p-to-p	kV	2
rep. rate	Hz	250

• KURRI (KUNST) KUCA ADS-Core R/D

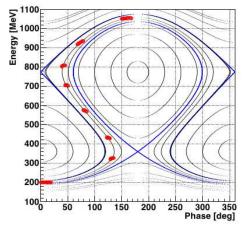
- A feasibility evaluation of ADS-R as an energy production system. ADS-R core irradiation program.


- First coupling to ADS-R core, March 2009, 100 MeV beam
- Thorium-loaded ADS-R experiment, March 2010 : 100 MeV, 30 Hz, 5 mW


100-150 MeV proton, repetition rate 20-50 Hz

Upgrade plans: variable energy 150-700 MeV facility, neutron flux increased by a factor 30

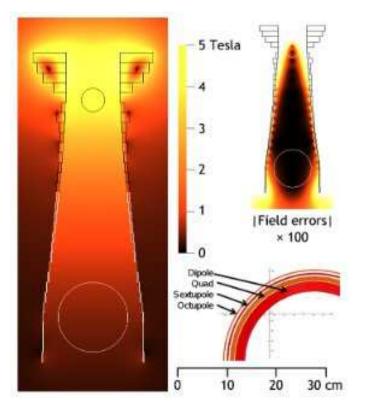
- RACCAM Spiral Design Magnet Prototyping
- Working frame : Neutrino factory R/D. French ANR funding, 2006-2008, 3.5 MEU
- A feasibility study of a rapid-cycling, variable energy, spiral lattice scaling FFAG
- Found application in simultaneous multi-port hadrontherapy application


- Towards High-Energy CW: Quasi-Isochronous "Serpentine" Acceleration Demo
- Allows fixed RF-frequency acceleration in variable $\beta = v/c$ regimen in a zerochromaticity FFAG lattice

- i.e., non-relativistic beam, suitable for proton acceleration.

• ADS equivalent (Emi Yamakawa et al., NIM A 716 (2013))

- Experimental demonstration with an electron ring prototype (Japan, 2012):
- small electron ring
- 160 keV \rightarrow 8 MeV
- F-D-F scaling triplet lattice at transition gamma (764 keV)
- RF freq. 75 MHz (h=1), 750 kV/gap


k-value	1.45
Equivalent mean radius at 200 MeV [m]	3
Equivalent mean radius at 1 GeV [m]	5.9
Stationary kinetic energy below transition [MeV]	360
rf voltage [MV/turn]	15 (h=1)
rf frequancy [MHz]	$9.6(h{=}1)$

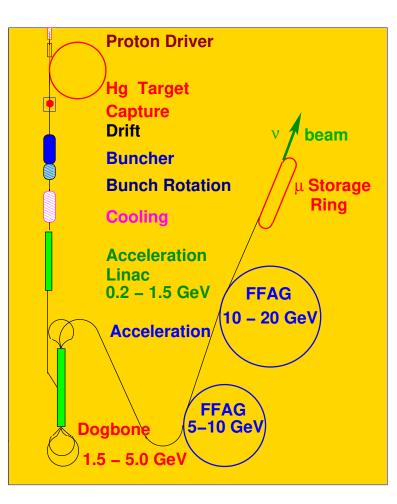
"Gutter acceleration" $\mathbf{H} \approx \sin^2 \pi \phi + \left[\mathbf{a} \left(\frac{\delta \mathbf{p}}{\mathbf{p}} \right)^2 \right] + \mathbf{b} \left(\frac{\delta \mathbf{p}}{\mathbf{p}} \right)^3$ • Vertical FFAG

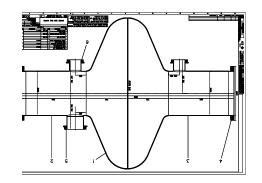
More on V-FFAG and proton-driver application, by J-B Lagrange tomorrow.

• Goal of this R/D: developments toward complete isochronism. Sub-relativistic orbits can be made isochronous by deviation from vertical (at lower energies, into bowl shape)

Field within the magnet gap :

 $\mathbf{B}_{\mathbf{y}} = \mathbf{B}_{\mathbf{0}} \exp(\mathbf{k} \, \mathbf{y})$

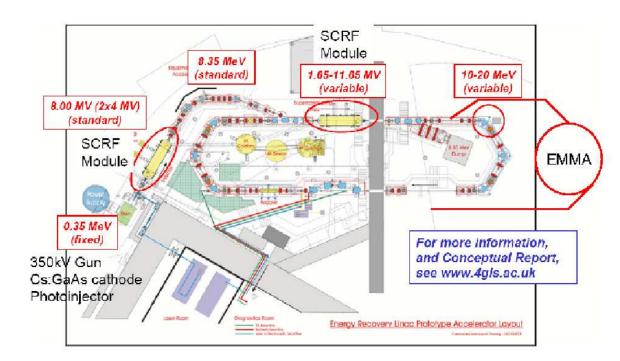

Refs:


FFAG Helicoidal, Etude de la Stabilité Bétatron, G. Leleux et al., CEA Saclay, Rapport S.O.C. 70 (19 juillet 1959);

J-B Lagrange et al., this workshop; S. Brooks, PRST-AB 16 (2013);

3.2.3 Linear FFAG Concept, Prototyping

- Two concepts introduced in late 1990s, in the "neutrino Factory" R&D framework:
- "linear lattice" FFAG : magnets are simple quadrupoles
- "quasi-isochronous" acceleration by near transition γ lattice design: allows using fixed frequency RF cavities (good for CW)
- Well suited for the acceleration of short-lived muons up to 20-50 GeV Compared to RLAs : many more turns, hence saving on RF cavities and systems,



• EMMA Ring Prototype

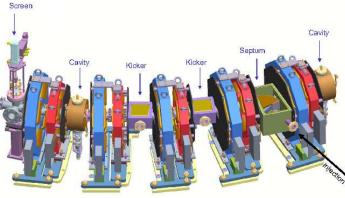
An experimental "Electron Model for Many Applications", to prove these concepts; an international collaboration.

- Construction at Daresbury Lab. started in 2007
- Commissioning 2010
- Quasi-isochronous acceleration and fast resonance crossing demonstrated in 2011

- Goals of EMMA experiment:
- prove rapid, "gutter acceleration"
- investigate resonance crossing
- assess phase space, dynamic aperture
- investigate sensitivity to defects
- assess stability, operating conditions

	EMMA	a param	eters	
Energy	range	MeV	10	- 20
number	of turns		<	16
circumf	erence	m	16.	568
Lattice			F/D d	oublet
No of ce	ells		4	2
RF freq	uency	GHz	1	.3
No of ca	vities		1	9
RF volta	age	kV/cav.	20 -	120
RF pow	er	kW/cav.	<	<2
Rep. ra	te	Hz	1-	20

EMMA cell



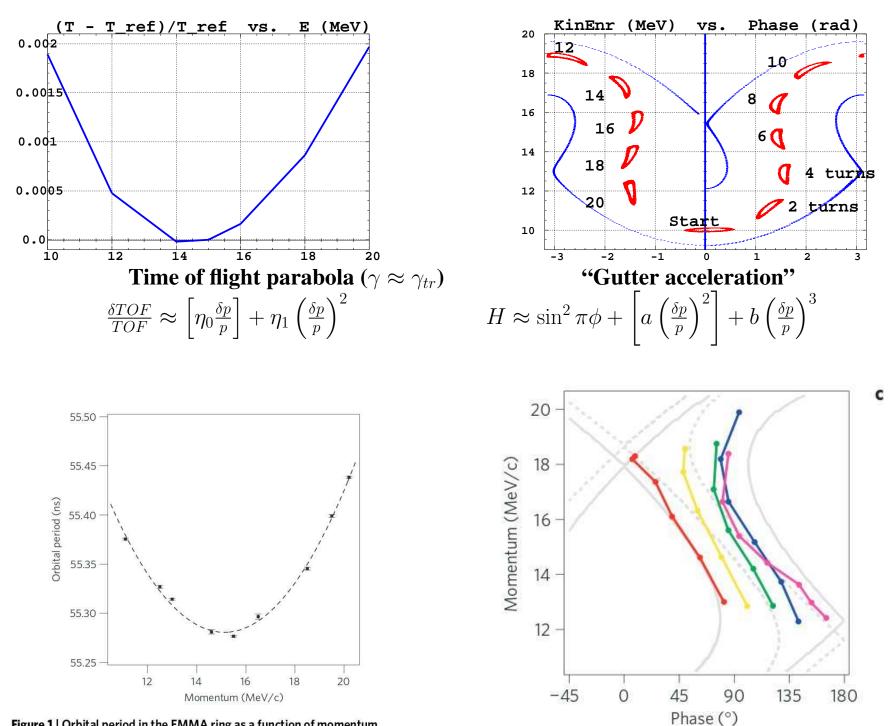
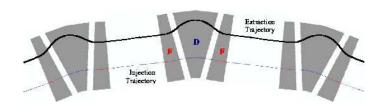
- cell length
- length F/D
- drifts
- QF/QD/Cav. ap. 7.4 / 10.6 / 4cm
- alignment

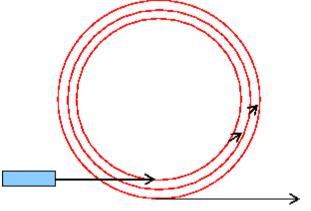
39.448cm 5.88 / 7.57cm 5 / 21cm 7.4 / 10.6 / 4cm 0.25μ (1σ)

Injection into EMMA, from ALICE

Injection Region

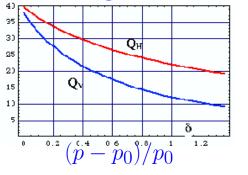
Principle of the quasi-isochronous - "serpentine" - acceleration


Figure 1 | Orbital period in the EMMA ring as a function of momentum,

3.2.4 Linear FFAG: Proton Driver Design Studies

• FDF FFAG cell / S. Ruggiero, BNL, early 2000s



• 3-stage acceleration (3 FFAG rings)

• Lots of betatron resonances crossed :

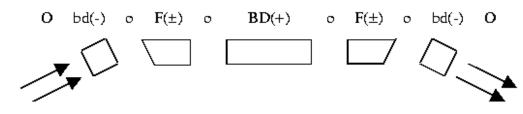
 $Q_x: 40 \rightarrow 19$, $Q_y: 38 \rightarrow 9$. However crossing is fast, all the way

• For neutrino factory p-driver, 12 GeV design, potential for several MW

		Ring 1	Ring 2	Ring 3
Energy, Inj.	(GeV)	0.4	1.5	4.5
Extr.	(GeV)	1.5	4.5	12
# of turns		1800	3300	3600
cycle time	ms	6	9	10
Circumf.	m	807	819	831
# cells		136	136	136
cell length	(m)	5.9	6	6.1
h		136	138	140
RF freq.	MHz	36-46	46-49.7	49.7-50.4
E gain / turn	MeV	0.6	0.9	2

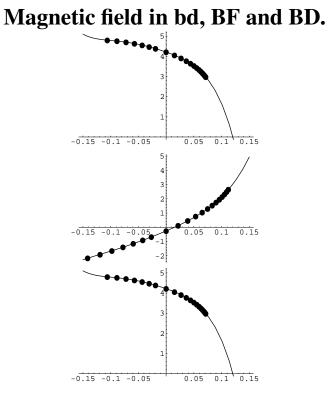
- Consider ring 1,
 - pulsed RF, using ferrite tuned cavities,
 - repetition rate >100 Hz,
 - assume few 10^{13} ppp

hence potential for MW beam power in GeV range.

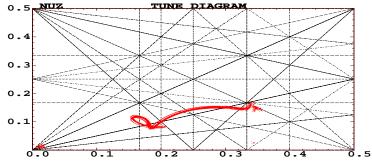

• CW acceleration based on "harmonic number jump", using fixed frequency RF systems, was investigated.

- Pumplet lattice / Graham Rees, 2004
- A non-linear, non-scaling type of FFAG, "non-linear cyclotron", G. Rees.

- A scheme investigated for a 20 GeV, 4 MW proton driver in the neutrino factory (two 50 Hz rings).

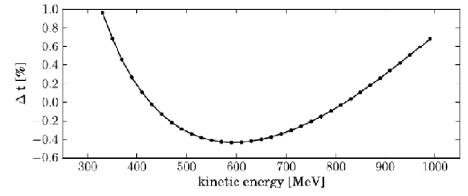


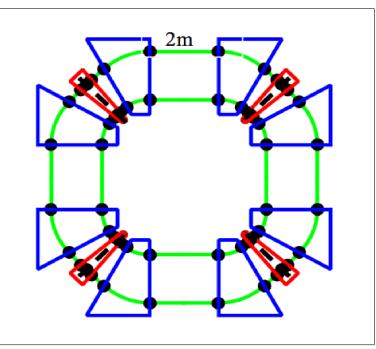
2.4 0.45 0.5 0.62 0.5 1.26 0.5 0.62 0.5 0.45 2.4 m $B_{bd}(x) = -3.456 - 6.6892 x + 9.4032 x^2 - 7.6236 x^3 + 360.38 x^4 + 1677.79 x^5$ $B_{BF}(r) = -0.257 + 16.620 r + 29.739 r^2 + 158.65 r^3 + 1812.17 r^4 + 7669.53 r^5$ $B_{BD}(x) = 4.220 - 9.659 x - 45.472 x^2 - 322.1230 x^3 - 5364.309 x^4 - 27510.4 x^5$


Allows insertion straights , with the advantages of

- 1. easier injection and extraction,
- 2. space for beam loss collimators,
- **3.** RF gallery extending only above the insertions, not above the whole ring,

4. 4-cell cavities usable, thus reducing, by a factor of four, the total number of rf systems.




NUX

- Toward CW high energy FFAG
- Quasi-isochronous, DFD triplet, lattice design
 - non-linear radial field profiles, alternating gradient bends,
 - optimized magnet-edge contour
- Features small tune variation over acceleration cycle
- Allows near-crest acceleration using fixed-frequency RF

• Numerical beam dynamics studies show huge transverse dynamical acceptance. OPAL simulations indicate feasibility of 20 mA current with no transverse beam growth.

Principle 6-cell lattice used for numerical beam dynamics studies.
0.33 to 1 GeV acceleration.

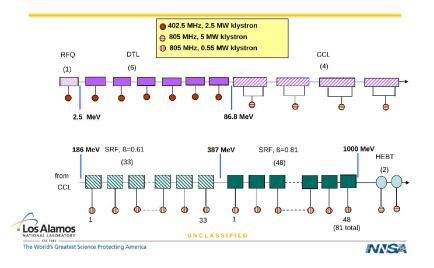
4 CHALLENGES

Regarding ADS-R application: devising MW scale designs from these techniques, to start with.

5 COMMENTS

Reliability

- FFAG methods and technologies (magnets, RF, instrumentation) are cyclotron style, very conservative, this is a good starting point.
- Regarding achieving required reliability at lowest cost from linacs, I am not convinced, at all:
 - Such extremely complex accelerator installations as light sources do reach near 100% reliability, have stored beams over days, non-stop. Large colliders store beams over day-scale durations.
 - However this does not come for free:
 - large periods of maintenance (weeks, months), yearly this is something we may not want at an ADS
 - extremely complex construction, operation and maintenance, and costs accordingly.

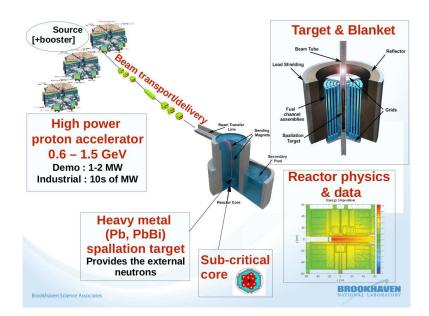

• I have in mind: high power linacs go by pair :

If I buy 1, I actually get 2 long strings of high power linear accelerators and other RF cavities of all possible sorts, of which I need to ensure ADS-R grade reliability.

• And redundancy adds on top of that.

Layout of Linac RF with NC and SRF Modules

Confer SNS:


- 100-something RF cavities,
- 81 klystons,
- 100s of power supplies of all sorts...

Corollary:

Linacs are claimed to lend themselves well to fault-tolerant designs:

- redundant cavity design: if one fails then adjust others to overcome,
- double the injector,
- and so on

It looks like, given the cost of a high power CW linac installation, there is room for a highly redundant multiple FFAG or cyclotron installation. A point worth taking a closer look at \implies Luciano.

Beam flexibility

In the ADS-Reactor application, is any of these needed :

- Multi-GeV for many applications (Project-X, China-ADS) ?
- H⁻ acceleration for stripping injection in accumulator ring (SNS)?
- Multiple species: whatever particle from p to U (FRIB) ?
- A "multi-purpose flexible irradiation facility", including energy upgrade plans (MYRRHA) ?
- 100s MeV beam energy flexibility for whatever reason?
- All of the above ?

6 CONCLUSION

If the answer is "NO" to all of these questions - previous slide -, then, fixed-field ring methods, are certainly worth considering very closely, and actively R&D'ed further towards ADS-R grade reliability.

Voilà

THANKS FOR YOUR ATTENTION

References

- [1] L. Calabretta, F. Méot: Cyclotrons and FFAG Accelerators as Drivers for ADS. Reviews of Accelerator Science and Technology Vol. 8 (2015)
- [2] F. Heidet. N. Brown, M. Haj Tahar: AcceleratorReactor Coupling for Energy Production in Advanced Nuclear Fuel Cycles. Reviews of Accelerator Science and Technology Vol. 8 (2015)
- [3] F. Méot, N. Brown, M. Haj Tahar, M. Todosow, N. Tsoupas: High Power From Fixed-Field Rings in the ADS-Reactor Application. 2014 American Nuclear Society Winter Meeting. Transactions of the American Nuclear Society, 111, 20-23 (Jan 1, 2014).
- [4] H. Abderrahim et al.: US "ADS White paper", Accelerator and Target Technology for Accelerator Driven Transmutation and Energy Production (2010) http://science.energy.gov//media/hep/pdf/files/pdfs/ADSWhitePaperfinal.pdf
- [5] Nuclear Fuel Cycle Evaluation and Screening, U.S. DOE-NE, Nuclear fuel cycle evaluation and screening final report. https://inlportal.inl.gov/portal/server.pt/community/nuclear_science_and_technology/
- [6] Paraipan, M., Baldin, A., Baldina, E, Tyutyunikov, S.: Light Ion Beams for Energy Production in ADS. EPJ Web of Conferences 173, 04011 (2018). https://doi.org/10.1051/epjconf/201817304011
- [7] Ludwig, H. and Todosow, M.: Thorium based concepts Description of target-blanket and technical issues. Seminar, Brookhaven National laboratory (2013)
- [8] Tahar, Malek Haj: High power ring methods and accelerator driven subcritical reactor application. BNL-113766-2017-TH (2016)

https://www.osti.gov/biblio/1351800-high-power-ring-methods-accelerator-driven-subcritical-reactor-application

- [9] Méot, F.: Fixed Field Alternating Gradient Synchrotrons. Procs. ICFA-HB2004 workshop, Bensheim, Germany, Octoder 2004
- [10] Seidel, M.: Energy efficiency of particle accelerators. 1st EuCARD-2 Annual Meeting, DESY Hamburg, Mai 19-23, 2014
- [11] M. Seidel, A.C. Mezger: Performance of the PSI High Power Proton Accelerator.
- [12] B. Riemer: Spallation Neutron Sources Around the World. 5th High Power Targetry Workshop, 20-23 May 2014 FermiLab.

- [13] Accelerator and Target Technology for Accelerator Driven Transmutation and Energy Production H. At Abderrahim et al. (2010).
 http://science.energy.gov//media/hep/pdf/files/pdfs/ADSWhitePaperfinal.pdf
- [14] C. Rubbia, P. Mandrillon, et al.: Conceptual design of a fast neutron operated high power energy amplifier. CERN 95-44 (1995)
- [15] FFAG Workshops. https://www.bnl.gov/ffag14/pastWorkshops.php
- [16] PAC and IPAC conferences (JACoW Acc. Conf. Site). https://www.jacow.org/Main/Proceedings
- [17] Cyclotron Conference (JACoW Acc. Conf. Site). https://www.jacow.org/Main/Proceedings