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Overview

 Typically tracking in FFAs is done using integration of the 
equations of motion

 Integrate some form of F = q v x B
 Integrate each time single particles
 This is fine for tracking few particles through a few turns
 CPU limited when doing large-scale tracking studies

 (Synchro)-FFAs have 10s of thousands of turns
 RK4 uses most of the CPU

 Scaling FFAs are well-suited for taking a transfer map 
approach for tracking

 Transfer map is the same at all momenta - it scales!
 Integrate for one cell; apply for every cell (or turn)

 In this talk
 Generalised field expansion for horizontal and vertical scaling FFA
 Determine vector potential and hence Hamiltonian
 Show that it scales
 Look at scaling of dynamic aperture (from Runge Kutta for now!)
 For the future: integrate into Transfer Map
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Fields

 Consider a general spiral FFA field - in the midplane

 With

Azimuthal dependence 
(including spiral angle)

Radial scaling

 f0, B0 and r0 are all lattice designer’s choice
 B0, r0, determine the reference orbit

 f0 is the fringe field length/shape (assume “well behaved” function)
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 Apply Maxwell’s laws to make an expansion in z/r

Field expansion

 With
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Example field map

 Trajectories scale with momentum
 Increasing order in z/r yields better divergence (and curl)
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 Choose a gauge with Az = 0

 Vector potential defined by

Vector potential
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 Usual equations of motion with     as partial derivative w.r.t. x

 Take the usual accelerator Hamiltonian for curved coordinates

Hamiltonian

 Nb: work in coordinate system with constant radius of 
curvature so that r = x + ρ0 

See also Scott Berg FFAG07 “A Hamiltonian Formulation for Spiral-Sector Accelerators”
 Scott works in spiral coordinate system
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 Consider equations of motion for position

Equations of motion

 As usual
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 Consider equations of motion for momentum

Equations of motion

 with
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 Consider scaled coordinates

Does it scale?

 And scaled functions
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 We need the derivative to scale for the machine to be 
“scaling”

 Consider e.g. x position

Scaled functions

 If the equations of motion scale, then after a small step the 
trajectory will remain in the scaled coordinate system

andPhase
Space 
vector

Scaled
Phase
Space 
vector



  12

 By reference to the equations of motion we require

Scaled functions

 If the equations of motion scale, then after a small step the 
trajectory will remain in the scaled coordinate system

and
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 Try Ax

Scaled functions

 … and so on for the derivatives, with β = αk+1
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Scaled functions

Note!
E = 3 MeV E = 30 MeV

E = 3 MeV E = 30 MeV
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Horizontal FFA

 Trajectory scales at all orders, perfectly
 Not just linear

 Trajectory scales in horizontal and vertical direction
 Geometric acceptance of the transfer map increases with 

momentum
 Integration is done here using RK4

 Not *perfectly* identical 
 Stepping in time
 Do not scale the time step
 Use same max time for number of steps

 ToDo: Implement transfer map (use OPAL Lie algebra routines?)
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Vertical FFA

 For a vertical FFA we can use similar path
 Field expansion (see e.g. Machida et al., Optics design of vertical excursion 

fixed-field alternating gradient accelerators, PRAB 24,  (2021)

y is horizontal
x is longitudinal
z is vertical
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Vector potential

 Vector potential
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Vertical scaling transformation

 Follow the same route to verify that the machine is scaling, 
but now
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Vertical FFA

 Follow the same route to verify that the machine is scaling, 
but now we require

E.g.
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Scaled DA

3 MeV

3 MeV

12 MeV

12 MeV
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Vertical FFA

 Trajectory scales at all orders, perfectly
 Not just linear

 Trajectory scales in horizontal and vertical direction
 Geometric acceptance of the transfer map constant with 

momentum
 Integration is done here using RK4

 ToDo: Implement transfer map (use OPAL Lie algebra routines?)
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