A 70 MeV cyclotron facility of IBS for ISOL and other uses

Jongwon Kim Institute for Basic Science, Korea

Snowmass'21 Workshop on High Power Cyclotrons, 7-9 Sep. 2021

Location of RISP (Rare Isotope Science Project) of IBS

Layout of RISP

Period: 2011.12~ 2021.12 (1st phase) Budget: ~1.3 billion USD (~0.9 billion for building and land) Total area: ~0.95 km²

Accelerator System RI producing System System

Conventional Utilities

RI beam production by ISOL method

ISOL target development

- **UCx** target development: <10 kW at 70 MeV (< ϕ 5 cm)
- SiCx target for initial operation

A schematic of radio-isotope release in ISOL target

A fast closing valve system against ISOL target vacuum loss

Connection of the beam line to the ISOL target system

2019

Jan.: Termination of a contract with Best Cyclotron Inc. (2017) June: Contact with IBA

Aug.: Start the contract with first payment

2020

Jan.: Finalizing the beam line design for ISOL Oct.: Field Mapping and shimming completed

CYCLONE®70

Energy	30-70 MeV		
Maximum proton intensity	750 μA		
Simultaneous extracted beams	is 2		
Number of sectors	4		
Hill field	1.6 Tesla		
Harmonic mode	4		
Frequency (fixed)	62MHz		
Injected H-current	10 mA (H-)		
Total weight	140 tons		
Cyclotron dia.	3.8 m		
Cyclotron Cryo-pumps	6		

2021

July~Aug.: Factory Acceptance Test and shipping Oct.~Nov.: Cyclotron rigging and start installation

2022

Aug.: End of the contract

An issue:

A long distance (>8m) from last quadrupole doublet to the ISOL target if a doublet is in the cyclotron room while uniform beam distribution being kept for a size of ϕ 2-5 cm.

Two configurations considered in optimizing beam optics

Configure 1: Quadrupole doublet in ISOL tunnel (chosen)

Configure 2: No quadrupole magnets in ISOL tunnel

Quadrupole doublet

Beam optics summary with nominal emittance at 70 & 40 MeV

	"nominal" beam size				
minimizing:	spot size	spot size	spot size	losses	
target diameter(mm)	20	30	30	30	
μA on target	100	100	700	700	
Energy(MeV)	70	70	70	70	
Transmis.(%) target col.	91.9	98.7	98.7	98.7	
last doublet col.	99.1	99.1	99.1	99.8	
45° entrance col. – Z15	99.97	99.97	99.97	99.97	
Quad Q12 col- Z35	99.97	99.97	99.97	99.97	
μA on collis Cyclo (μA)	108.1	101.3	709.1	709.1	
target col.	7.8	0.4	2.8	7.8	
last doublet col.	0.9	0.9	6.2	1.2	
45° entrance col. – Z15	0.0	0.0	0.0	0.0	
Quad Q12 col- Z35	0.0	0.0	0.2	0.2	
Power(W) target col.	545	28	199	546	
last doublet col.	66	62	432	84	
45° entrance col. – Z15	0	0	0	0	
Quad Q12 col- Z35	2	2	15	15	
X/Y On target:	•				

Nominal emittance of Cyclone70

	70 MeV	40 MeV	Normalzied
εx (π·mm·mrad)	9.7	12.9	3.8
εy (π·mm·mrad)	5.8	7.8	2.3

Factory Acceptance Tests remotely in June, 2021

C70 cyclotron at IBA

Magnet current ramping

RF power test

Layout for other users

70 MeV protons: ⁶⁷Cu (therapy+diagnostic applications) ⁸²Sr/⁸²Rb (heart function) and ⁶⁸Ga/⁶⁸Ge generator Medical isotope production? 12 m ιLIΓ 20 m Fast & cold Need a new beam line PPP neutron science 1.00 Ηŀ Beam hole ready

Availability of beam time for other uses

- ISOL target's lifetime is ~2 weeks and it will take 1-2 weeks for replacement.
- Simultaneous two beam extraction is possible at the same energy.

Concluding remarks

- A 70 MeV proton cyclotron is to be installed from Oct. 2021 and site acceptance tests will be started from early next year.
- Considerable beam time can be available for other users besides ISOL when 2nd extraction beam line is installed.
- There are strong demands of 70 MeV proton beams in the nuclear medicine and neutron science communities of Korea.