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Introduction

Axions and

Higher Gro . .
psiRll  Axions are important!

Symmetry

. @ Strong CP problem
Srennan e Dark Matter
Introduction @ Mechanism for Baryogenesis
@ String Theory
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Introduction
Axion Strings

Axions and
Higher Group
Global
Symmetry

- @ Important feature are axion strings:

Brennan

Introduction % da = 27Tn f n e Z
5

tell us a lot about theory:

e Axion string confinement: color confinement scale
e String tension: upper bound on scale of UV physics
Estring ,S T1/2

string

scale of string nucleation from vacuum.
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Introduction
Goal

Axions and
Higher Group
Global
Symmetry

T. Daniel
Brennan

Goal: Derive model independent constraints on UV completion
of axion models

Introduction

@ Realize axion string stability in terms of generalized global
symmetries

@ Study implication of fact that realistic axion strings have
finite tension
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Axions and
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Symmetry

@ Introduction
Liodicnes © Generalized Global Symmetries
© Axion Electrodynamics

@ Axion Yang-Mills

© Generalizations and Outlook
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Global Symmetry

Axions and

Higher Group . . .
Global Consider d-dimensional theory

Symmetry
e U(1) global symmetry < conserved current

T. Daniel
Brennan

o' =0 <= dxj1=0

Generalized
Global
Symmetries

e Charged operators are local: Og4(x) charged with respect

to Q = fMd .

@ U(1) symmetry group acts via exponentiated charge
operators Uy(My_1) = €@

U, U, = Ugi1g, Us(My—1) Og(x) = €99 Oq(x)
when x inside My_1.
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Generalized Global Symmetry

Axions and e Continuous higher form symmetries correspond to
Higher Group

Global conserved anti-symmetric tensor field “current”

Symmetry

T. Daniel 8#1./“1”.“[( - O < d * Jk = O

Brennan

Ceneratined o Integrating *Jj over a closed (d — k)-manifold measures
Global the charge of (k — 1)-dimensional charged operator

Symmetries
I

L,
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Higher Form Global Symmetry

Axions and
Higher Group

Global A U(l)(”) p-form global symmetry has:

Symmetry

e @ (p+ 1)-form conserved current Jpy1: d * Jpi1 =0

Brennan

@ Acts on charged p-dimensional operators by exponentiated
charge operators or symmetry defect operators (SDO):

Generalized
Global
Symmetries

Us(E) = €[] = [ ),
X

where ¢ € R and X is (d — p — 1)-dimensional.
o Uy(X) follow U(1) group multiplication

U¢1(Z) ) U¢2(Z) = U¢1+¢2(Z)
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Higher Form Global Symmetry (cont.)

Axions and
Higher Group
Global
Symmetry

T. Daniel . .
Brennan @ Symmetry defect operators act on charged p-dimensional

operators by linking

Generalized
Global
Symmetries Lq e Ly

Ciqd).ou (z)
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Discrete Higher Form Symmetries

Axions and
Higher Group
Global
Symmetry

T. Daniel . . . . . .
Brennan Discrete higher form symmetries will be important for axion

physics
Generalized @ No currents, but can still define notion of SDO:
Global .
s o Induce symmetry transformations on charged operators

@ In axion models, many discrete symmetries descend from
explicitly broken continuous symmetries

o Can still use formalism of continuous symmetries restricted
to discrete subgroup
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Background Gauge Fields

fions and Turning on background gauge fields is crucial for analyzing
igher Group

Global global symmetries

Symmetry

— e p-form symmetry has (p + 1)-degree differential form
Brennan gauge fleld

Generalized S = ... + I/Aer]_ AN *Jp+1 5AP+1 = d/\p

Global
Symmetries

@ Discrete symmetries: inserting SDQO's in path integral
o Explicitly broken U(1) — Zy, background gauge field can
be realized as flat U(1) connection with holonomies in Zy

2mk
A +1 - =
J o=

Z[Aps1 + dA,] = Z[A,] €' AAN

@ Anomalies
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Higher Group Global Symmetries

Axions and
Higher Group
Global
Symmetry

Brerman @ Higher groups describe when higher form symmetries of
different degree mix together to form a more general

Generalized Symmetry structure

S o General Idea:
o p-form and g-form symmetry have mixed anomaly (p > q)
o Mixed anomaly canceled by Green-Schwarz mechanism
o Modifying transformation properties of p-form
background gauge field so that they depend on g-form
transformation parameters
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Higher Group Global Symmetries (cont.)

Example: 2-Groups

Axions and

Moo e Simplest example is 2-Group: mixes 1-form and O-form global

Global symmetries
Symmetry

— e QED with 4 Weyl fermions {1;}
Brennan
UW)en | U
Generalized ¢1 1 1
Symmetres v2 | 1 -1
Y3 | -1 q
(N -1 -q

o Mixed U(1)2 x U(1)em-anomaly:

2 —24¢°
S22 [ n s

Fem is gauge field strength, F, = dA; background field
strength.

s
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Higher Group Global Symmetries (cont.)

Example: 2-Groups

Axions and . . .
Higher Group ° U(l)(l) magnetic symmetry: magnetic line operators
Global

Symmetry cannot be broken
T. Daniel .
Srennan F |
. sh="" S = [ ByAFum
27 27
G lized .
Clobal @ Realize anomaly as
Symmetries
(2—2¢%)i
Toe=~——F—" [ Fe NFgAxJp.
872 g g

@ Cancel anomaly by declaring B, transforms under
background U(l)éo) transformations:

2 —2q2
§A; = do 6By =dA; — q9

/\OFa
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Higher Group Global Symmetries (cont.)

Axions and
Higher Group
Global
Symmetry

T Danel @ More generally n-group can have 0-form, 1-form, ...
Srenen (n — 1)-form global symmetries that all mix together

o Because of dimensionality, usually p-form only mixes with

Generaized symmetries of higher degree (g-form for g > p)

Symmetries @ Nested Structure:
Gr-1 € G2 C ... C G

Gp is n-group of p- and higher form symmetries form closed
symmetry structure.

15/32



Higher Group Global Symmetries (cont.)

Axions and
Higi&er Group
lobal A .
Symmetry Consider emergent higher group symmetry

aniel @ E,form: energy scale where p-form symmetry emerges

nan

@ Nested structure of n-groups gives parametric hierarchy of
, scales:

Generalized

Global

Symmetries

EO-form S, El-form N ,S Enfl-form

~

sames as case of ordinary nested group structure.
@ Means parametric violation of hierarchy is not allowed:
Eq—form » Ep—form for qg<p
o Violation means (original) higher group symmetry does not
emerge along RG flow
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Axion Electrodynamics

apdcnsland Let us consider axion electrodynamics:
Higher Group

Global
Symmetry

5:/1da/\*da+1F/\*F—lKaFAF
2 2g2

T. Daniel 87T2f

Brennan
where K € Z and a ~ a + 2« f.
@ Symmetries associated with axion field:
° Zgg) 0-form shift symmetry

Axion Electro- o U(1)© broken by axion coupling
dynamics

>!<j1 = if x da (5A1 = d)\o

o U(1)® 2-form winding symmetry
o Stable axion strings

1
= —— Az = dA
*J3 27rfda ) 3 d 2
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Axion Electrodynamics (cont.)

Axions and
Higher Group
Global

iK
SYmmey S= / dafNxdat 5 oF NeF — g opaF NF
T. Daniel 87I' f

Brennan

@ Symmetries associated with gauge field:

° Zs(l) 1-form electric symmetry
@ Stable Wilson lines
Axion Electro- o U)W — Z&l) broken by axion coupling

dynamics

F
kJe =% — 0Be = dA.
g
° U(1)£,%) 1-form magnetic symmetry
o Stable monopole/‘t Hooft defect

hm= T 5By =dh,
2
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Axion Electrodynamics (cont.)

Axions and
Higher Group . . .
Global Probe anomalies by turning on background gauge fields (and

Symmetry .
adding local counter terms)

T. Daniel
Brennan

S— / (da — FAL) A +(da — FAY) + 12(F B AKF—B)

iK

i
~ 827 a(F — Be) A (F—B)+2—F/\Bm+2TrfA3/\da

Axion Electro-
dynamics

Coupling to background fields can alternatively be written

i i
%A A dBp + ﬁad/\?,

Theory is not invariant under background gauge
transformations
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Axion Electrodynamics (cont.)

Axions and
Higher Group

Global 1

T 5:/2(da—fA1)/\>k(da—fA1) 2g2(F B) A #(F — Be)

N K A(F B A(F— B+~ Agsuge A Hon + a6
- 8m2f e} oneuEe onf "t

@ Cancel variation terms with dynamical fields by modifying
transformation

Axion Electro-
dynamics

K K
0A3 = dN\o — — Be A dNe — —Ne A d\e
27 47

K K K
0Bm = dAp + — A1 ANe — —XgBe + —dXg A A\e
27 27 2T

and background field strengths

K K
Hz = dB, + —A1 A Be Gy = dA3 + —Be N Be
2w 4
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Axion Electrodynamics (cont.)

Axions and
Higher Group
Global

1 1

Symmetry S = /2(da — fAl) AN *(da — fAl) + @(F - Be) VAN *(F — Be)

T. Daniel

Brennan IK (F B ) (F B B ) + LA /\ H . I 3 G
- 8n2f € o &vee mopfe

@ Remaining transformation encodes 't Hooft anomaly

Axion Electro-

dynamics I5 = L /A]_ VAN G4 + Be A Hm
2m

° Zg?) x U(1)®)-mixed anomaly
° U(l)(,%) X Z(;)-mixed anomaly
Unsurprising, always mixed anomaly between dual global

symmetries: cannot gauge electric and dual magnetic gauge

field simultaneously.
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Axion Electrodynamics (cont.)

Axions and _ .
Higher Group 3 GrOUp structure:

o ° Z%) — U(l)(z) El—form SJ E2—form

Symmetry

T. Daniel

Brennan 5A3 = d/\2 — 786 /\ d/\e - 7/\6 /\ d/\e
21 47

° U(1)(2) is broken at Ex form S Tslt{;g

o = 7Y broken Eoee < T2

. string.
o Model independent for all axions!

) ZE?) X Z%) — U(l)g‘f];) EeIeC7 Eaxion g Emag

K K K
0Bm = dANyy + — A1 ANe — —XgBe + —dXg A Ae
2T 2 27

Axion Electro-
dynamics

o If UV completion is non-abelian gauge theory with 71(G)
finite then U(1)$,1,) broken at Egyrt

° = Eeleca Eaxion ,S Ecut
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Axion Yang-Mills

Axions and
Higher Group
Global

Symmetry SU(N) Axion Yang-Mills
. Daniel
Brennan

K
S= / da A xda + Tr[F A xF] — aTr[F A F]
@ Axion Symmetries

° Zgg) axion shift symmetry
I o U(1)® axion winding symmetry

Yang-Mills

@ Yang-Mills Symmetries
o No magnetic 1-form symmetry
o ZY center s
N ymmetry

23/32



Axion Yang-Mills and Center Symmetry

Axions and
Higher Group
Global
Symmetry

T. Daniel
Brennan

@ Wilson lines are labeled by SU(N) representation R
W = Trg P el | Asauee

R labeled by Young-Tableaux Yg
o Since gluons charged, can partially screen Wilson lines
\A(:Lf’g'IMi”s @ Only invariant is number of boxes in Yg mody
o Charge of representation R under Zy = Z(SU(N))
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Axion Yang-Mills and Center Symmetry (cont.)

H?;Fi:’:sGargSp @ Can turn on background gauge field for Z(,\})
Symmmatry e Easy way to do this is to lift SU(N) connection to U(N)
e connection and then subtract off U(1) component

Brennan

FSU(N) — ﬁU(N) — B.1 .

@ Subtraction requires 2-form Lagrange multiplier ¢5 in
action

xion 1 ]
\A(ang_Mins S= /2(da — fA1) A x(da — A1) + ﬁA3 A da

1 ~ ~ 1 o
+ 53 TUF = Bo) A+l = Bl + 5 / o2 ATH[F — B

aTy[(F — Bo) A (F — Be)]
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Axion Yang-Mills and Higher Group Symmetry

Axions and
Higher Group
Global 1 /
Symmetry 5 — /(da — fA]_) N *(da - fAl) + ﬁa G4
T. Daniel

Brennan

2;2Tr[(F Be) A x(F — B)]+/<p2/\Tr[I:‘—Be]l]

K Fay ~
@ Again, we can cancel the variation of the action up to ‘t
GA— Hooft anomalies by adding local counter terms and
modifying background transformations
KN(N — 1 KN(N —1
0A3 = dN\y — ¥A1 A Be — g/\l A dAq
T 41
0Be = d\g
KN(N —1
Gy = dAs + ( )Be/\Be
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Axion Yang-Mills and Higher Group Symmetry

(cont.)

Axions and
Higher Group . i
Global @ Again, 't Hooft anomaly between dual symmetries

Symmetry

T. Daniel
Brennan

I5:/A1/\G4

3-group global symmetry:
KN(N — 1 KN(N —1
7( )Al A Be — 7( )

s U

6A3 = dN\y — A A dN

Axion

Yang-Mills

o ZS\}) — U(]-)(Q) El—form 5 E2—form

o U(1)® broken at Epform < Tslt{i?vg
1/2
Tstring

° = El—form ,S
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Axion Yang-Mills and Higher Group Symmetry

(cont.)

Axions and

el Demonstrate with example: KSVZ model

Symmetry

@ SU(N) gauge theory, uncharged complex scalar ¢, and
. Daniel . . .
Erenman fermions in fundamental (¢4) and anti-fundamental ¢ _

1 1 -
S= / Sde A xdP+ @Tr[F A *F] + ih+5" Dyips

—m*(||*=F2)? + App1 - + c.c.

Axion
Yang-Mills

o Theory has anomalous U(1)pg symmetry 1y — e’y
and ¢ — €%y
@ Flows in IR to axion-Yang-Mills

e  condenses = 11 acquire a mass and freeze out
o U(1)pg pseudo-goldstone is axion
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Axion Yang-Mills and Higher Group Symmetry

(cont.)

H‘i\gxgi'f;gsp Theory has 3-Group global symmetry. Want to demonstrate
Global
Symmetry E]_—form SJ E2—form

T. Daniel
Srennan @ UV theory has no Zg\:,l) center symmetry because ¥+

charged:
Eiform = my,. = M

@ In this model, Ex_form is scale above which axion strings

can decay:
Q:in";Mms o Energy for radial mode of ¢ to traverse over center of
Mexican hat potential (V(¢) = m?(|¢[2—F?)?)

El—form = \/Ef < T511_4,2ng =f

Leads to inequality:

A<
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Axion Yang-Mills and Higher Group Symmetry

(cont.)

xions and Consider parametric violation: A >> \/m.

Higher Group
Sme'"mbjt',y o Need to integrate out 14 before radial mode of ¢

T Daniel o Leads to large corrections to the effective potential

Brennan
M NK Al | *
Vg = 4 ) D 2(1p]2—F2)?
off = 53 <\90| og </\uv 2 ) Tm (el )

has minimum

xion /\ 8
\A(ang_Mins (lel) ~ %e NK)\“ >> Ayy

@ Leads to breakdown of effective field theory: theory flows
to different IR fixed point.

@ 3-Group Hierarchy satisfied!
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Generalizations and Overview

Axions and
Higher Group
Global
Symmetry

T Daniel @ From pure symmetry considerations we were able to derive
Brennan . . .
constraints on UV completions of axion models:

El—form 5 E2—form

o Able to demonstrate explicitly in example

@ Analysis can also be applied to theories with low energy
fermions: axion-QCD, axion-QED (see paper)

Seneraiizations @ Hopefully will be applicable in many phenomenologically
interesting models
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The End.
Questions?

Generalizations
and Outlook
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