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Goal




where        ,     and   


For  YM theory,





e−Vf(θ) =
Z(θ)
Z(0)

Z(θ) = ∫𝒟U e−SYM+iθQ Q = ∫ d4x q(x) q(x) =
1

64π2
ϵμνρσFa

μνFa
ρσ

SU(N)

Q ∈ ℤ ⇒ Z(θ) = Z(θ + 2π) ⇒ f(θ) = f(θ + 2π)

SYM is CP even ⇒ Z(θ) = Z(−θ) ⇒ f(θ) = f(−θ)

2

}    
f(π − θ′￼) = f(π + θ′￼)

Clarify the θ dependence of free energy density  of 4d YMf(θ)



 dependence and CP violationθ
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FIG. 1. The vacuum energy as a function as a function of 0 may have a single branch (first drawing) 
or it may have several branches, which cross at particular values of 0 (second drawing). 

8 = T CP invariance is more subtle and must be defined as & -+ -& + 2rrni , 
where the nb are arbitrary integers such that C ni = 1. 

If Eq. (21) has only one solution for given 8, this solution must be CP conserving 
whenever CP is a symmetry of the equation. However, if there are, for example, two 
solutions, it can happen that at 8 = v neither solution is CP invariant, but rather a 
CP transformation exchanges them. In this case, the CP symmetry is spontaneously 
broken at 19 = T. The two solutions must, because of the symmetry, be degenerate in 
energy at 19 = T, and they are quite likely to cross in energy near 0 = rr. 

Let us see how this works in the realistic case 

Actually, an equivalent problem was analyzed by Dashen some years before QCD was 
discovered [ 161, 

In the regime (22) our equations can be written, at 0 = T, 

4u + 4d + $8 = =3 
m, sin & = ma sin tjd = m, sin dS . 

(Remember that pUa : pd2 : pS2 = m, : md : m, .) After eliminating 
finds the following equation for +S : 

(23) 

dU and qL , one 

mumd sin #S 
i(mu - ma)” + 2m,m,(l - cos c$J)~I~ = m, sin qSS. 

This equation has only the CP conserving solution sin dS = 0 unless 

mumd>m,Imd--U 

(24) 

(25) 

f(θ)

Dilute instanton gas approximation (DIGA)

⇒ f(θ) = χ(1 − cos θ)

• a single branch

• smooth everywhere
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(23) 
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This equation has only the CP conserving solution sin dS = 0 unless 

mumd>m,Imd--U 

(24) 

(25) 

f(θ)

Dilute instanton gas approximation (DIGA)

⇒ f(θ) = χ(1 − cos θ)

• a single branch

• smooth everywhere

• consists of many branches with crossing

• spontaneous CPV (1st order PT) at  with 

the order parameter  
θ = π

df(θ)/dθ = − i⟨q(x)⟩

Large N argument [Witten (1980, 1998)]

⇒ f(θ) = χ/2 min

k∈ℤ
(θ + 2πk)2 + O(1/N2)

-π 0 π 2π 3π

θ

f(θ)
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• a single branch

• smooth everywhere

Interested in  around  in 4d  YM theory.f(θ) θ ≈ π SU(N)

• consists of many branches with crossing

• spontaneous CPV (1st order PT) at  with 

the order parameter  
θ = π

df(θ)/dθ = − i⟨q(x)⟩

Large N argument [Witten (1980, 1998)]

⇒ f(θ) = χ/2 min
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• Large  argument seems robust ⇒ CPV at  for large N


• Formal arguments tell that, for general , CP has to be 
broken at  if the vacuum is in the confining phase.

[Gaiotto, et al.(2017)],   [Kitano, Suyama, NY(2017)]


• Some numerical evidences of CPV for 


• What happens to the possible smallest N, i.e.  YM ?

Is it like “large ” or “2d ” ?


⇒ Lattice numerical simulations (difficult due to sign problem)

N θ = π

N
θ = π

N ≥ 3

SU(2)
N CP1

T

θ
2ππ

Tc

SU(2)?

T

θ
2ππ

Tc

SU(N)  for  N ≫ 1

C
P

confine

confine

deconfine

deconfine
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Summary of previous results on  f(θ)



New method without any expansion
Generate configurations with 

Define sub-volume   and 











with         (  : dynamical length scale)


           : surface tension

θ = 0
Vsub = l4 Qsub = ∑

x∈Vsub

q(x) ∉ ℤ

e−Vsub fsub(θ) =
Zsub(θ)
Z(0)

=
1

Z(0) ∫𝒟U e−Sg+iθQsub = ⟨eiθQsub⟩

fsub(θ) = −
1

Vsub
ln⟨ cos(θQsub) ⟩

f(θ) = lim
Vsub→∞

fsub(θ) = lim
l→∞ {f(θ)+

s(θ)
l

+ O(1/l2)}
l4
dyn ≪ Vsub ≪ Vfull ldyn

s(θ)

Vsub

Vfull

θ ≠ 0

θ = 0

5

“sub-volume method”

[Kitano, Matsudo, NY, Yamazaki(2021)]

cf) 2d  by [Keith-Hynes and Thacker (2008)]CP1

cf) string tension



Lattice parameters and observables
•  YM theory by Symanzik improved gauge action


•   (relatively fine: )


•   ( )

• Periodic boundary condition in all directions

• # of configs = { 68000 ,  10000 ,  10000 }


• Calculate    and estimate


✓ 


✓ 


which are used to crosscheck each other

SU(2)

β =
4
g2

= 1.975 1/(aTc) = 9.50

Vfull = 243 × {48, 6, 8} T = 0, 1.2Tc, 1.6Tc

Qsub = ∑
x∈Vsub

q(x)

f(θ) = − lim
Vsub→∞

1
Vsub

ln⟨ cos(θQsub) ⟩

df(θ)
dθ

= lim
Vsub→∞

1
Vsub

⟨ Qsub sin(θQsub) ⟩
⟨ cos(θQsub) ⟩

6

Vsub

Vfull

θ ≠ 0

θ = 0



 limit at l → ∞ T = 0

•  with 


• Data in the range of  are 
fitted to


               


• Linear extrapolation works well.

Vsub = l4 l ∈ {10, 12, ⋯, 24}

l4
dyn ≪ Vsub ≪ Vfull

fsub(θ) = f(θ) +
as(θ)

l

7
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FIG. 2: The linear extrapolation of f(✓) to nAPE = 0, where
f(✓) is obtained by the fit with l 2 [14, 18].

region for ✓ = 3⇡/2. In order to estimate the potential
size of the systematic uncertainty due to the ambiguity of
the universal region, three fit ranges, l 2 [12, 16], [14, 18]
and [16, 20], are examined when fitting to the expected
universal behavior

fsub(✓) = f(✓) +
a�1 s(✓)

l
, (7)

where s(✓) denotes the surface tension of the nonzero ✓
domain and a the lattice spacing. The fit works, and
all the fits yield �2/dof < 3. It is interesting to see
that the relative relation fsub(3⇡/2) > fsub(⇡) at small
l flips toward the large l limit and f(✓) ends up with
non-monotonic function.

The results thus obtained are then extrapolated to
nAPE = 0 at each value of ✓ with the fit range shown
in Tab. I. In the extrapolation, the linear fit goes well
with �2/dof < 3. The stability against small shifts of the
fit range is seen in Fig. 2.

Finally, the free energy density obtained from the three
fit ranges are shown from top to bottom (open sym-
bols) in Fig. 3 together with the full volume result at
nAPE = 45 (filled squares), where f(✓) is normalized by
the topological susceptibility in Tab. I. The prediction
from the dilute instanton gas approximation, 1� cos(✓),
is shown by the dashed curve. The function, ✓2/2, is also
shown as the solid curve for comparison. Taking into ac-
count the uncertainty arising from the ambiguity of the
universal region, the numerical results are consistent with
the instanton prediction. Note that non-monotonic be-
havior of f(✓) seems robust at high temperature but is
far from obvious before the extrapolations, as the surface
tension term in Eq. (7) is monotonic.

f(✓) can also be obtained from the numerical integra-
tion of df(✓)/d✓ as shown by the dotted curves. The
agreement with those curves supports that the two non-
trivial extrapolations included in the whole analysis do
not pick up accidental fluctuations and are stable.
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FIG. 3: The ✓ dependence of f(✓) at T = 1.2Tc.

 0

 5

 10

 15

 20

 0  0.02  0.04  0.06  0.08  0.1

a
4
 f

su
b
(θ

) 
×

 1
0

5

1 / l

θ=π/2, nAPE=20
θ=π, nAPE=20

θ=3π/2, nAPE=20

FIG. 4: The linear extrapolation of fsub(✓) to the infinite
volume limit.

The result with full volume is found to well agree with
the instanton prediction. One may think that this is the
simplest way to obtain f(✓). However, we will see that
it does not work at T = 0. From the test, assuming that
the instanton prediction is valid at high temperature, we
learn that the universal behavior of fsub would be linear
and the region showing such a behavior starts around the
dynamical length scale (⇠ 1/(aTc)).

IV. APPLYING TO ZERO TEMPERATURE

Next we apply the subvolume method to calculate the
vacuum energy density. This time the subvolume is de-
fined by Vsub/a4 = l4 with l = 10, 12, · · · , 24 and taken
from 512 places per configuration. The l dependence of
fsub(✓) are shown in Fig. 4 as before. Due to the sign
problem in this method, some results at large ✓ and large
l could not be calculated. But the available data show



 dependence of    at θ f(θ) T = 0
• Succeed to calculate up to 

• Monotonically increasing function

• Inconsistent with DIGA

•  requires explanation.

• Re-weighting (=full volume) method 

works only around .


• Numerical consistency with 

θ ∼ 3π/2

f(π − θ) ≠ f(π + θ)

θ = 0

∫dθ
df
dθ
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Figure 6. θ dependence of f(θ) (top) and df(θ)/dθ (bottom) at) at T = 0, 1.2Tc and 1.6Tc from left to right.
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 at df(θ)/dθ T = 0

• Order parameter is non-zero





⇒ spontaneous CPV at 

df(θ)/dθ
θ=π

= − i⟨ q(x) ⟩θ=π ≠ 0

θ = π
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FIG. 5: The linear extrapolation of a4f(✓) to nAPE = 0 for
the data obtained with l 2 [12, 16].

linear behavior. Following the previous analysis, three
fit ranges of l 2 [10, 14], [12, 16] and [14, 18] are taken
in the fit to (7) to estimate the systematic uncertainty.
Contrary to the high temperature case, f(✓) turns out
to be stable against the variation of the fit range, and
does not show any sign of the flip, indicating monotonic
behaviors of f(✓) as a function of ✓.

The linear extrapolation to nAPE = 0 is carried out
with the fit range shown in Tab. I, and the fit is found
to work well with �2/dof < 3 as shown in Fig. 5. The
stability against shift of the fit range is also confirmed.

Finally, the resulting f(✓) and df(✓)/d✓ are shown in
Fig. 6 together with the predictions from the large N
(✓2/2) and the instanton calculus (1� cos ✓). The stabil-
ity of the two extrapolations during the analysis is con-
firmed as f(✓) and df(✓)/d✓ well agree with the dotted
curves. While the full volume calculation works only in
the vicinity of ✓ = 0, the subvolume method succeeds
to calculate, at least, to ✓ ⇠ ⇡. There are crucial differ-
ences from the high temperature case. First, the different
choices of the fit range in l yield consistent results, and
hence the potential systematic error from the ambiguity
of the universal region seems to be under control. Sec-
ond, f(✓) is a monotonically increasing function, at least,
to ✓ ⇠ ⇡, and the direct calculation of df(✓)/d✓ clearly
shows d f(✓)/d✓|✓=⇡ 6= 0. Since d f(✓)/d✓ = �ihq(x)i is
CP odd, we conclude that CP is spontaneously broken
at ✓ = ⇡ in the vacuum of the 4d SU(2) Yang-Mills the-
ory [? ] and that there is a phase transition to recover
the CP symmetry at some finite temperature. In other
words, it is found that the 4d SU(2) Yang-Mills theory is
in the large-N class unlike the 2d CP1 model [? ].

V. DISCUSSION

The symmetry of SU(N) gauge theories indicates
f(✓) = f(�✓) and f(✓) = f(✓ + 2⇡). In the subvol-
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ume method, f(✓) = f(�✓) is automatic from (2) but
the 2⇡-periodicity is not seen in f(✓) shown in Fig. 6.

The subvolume method is equivalent to modifying the
value of ✓ inside the subvolume. If the difference of ✓
is a multiple of 2⇡ and the calculation respects the 2⇡-
periodicity, the free energy would scale as the surface area
of the subvolume when the subvolume is large enough.
The lack of 2⇡ periodicity in the free energy density
should thus be interpreted as the presence of a meta-
stable vacuum for a fixed value of ✓ (except for ✓ = ⇡
where two vacua interchanged by CP are degenerate and
stable). Thus, we expect that the meta-stable vacuum
should eventually decay into the stable one by the cre-
ation of a dynamical domain wall that attaches to the
interface.

The absence of the decay of the domain into the
domain-wall in the lattice calculation has an analog in
the calculation of the static potential [? ]. The static
potential is calculated by inserting a Wilson loop, and
should show the string breaking for configurations with
light dynamical quarks when the two test charges are dis-
tant enough. But it does not occur, at least, within naive
methods, and the resulting potential sticks to the origi-



 dependence of    at θ f(θ) T = 1.2Tc
• Systematic error due to ambiguity of the scaling 

region is large for 


• Within large uncertainty, consistent with the DIGA.



•  ⇒ no CPV above 


• Numerical consistency with 


• Similar results at 

θ > π

df(θ)/dθ
θ=π

≈ 0 Tc

∫ dθ
df
dθ

T = 1.6 Tc
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Discussion
•For  ,  consistent with 


•At  ,    is not satisfied and it is not like

T > Tc f(θ) = χ(1 − cos θ)

T = 0 f(π − θ) ≠ f(π + θ)

11

Why ?

-π 0 π 2π 3π

θ

f(θ)



Interpretation
• Sub-volume method seems to trace an original 

branch even after the crossing point is passed.
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discovered [ 161, 

In the regime (22) our equations can be written, at 0 = T, 

4u + 4d + $8 = =3 
m, sin & = ma sin tjd = m, sin dS . 
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Interpretation
• Sub-volume method seems to trace an original 

branch even after the crossing point is passed.

2

into pieces above certain critical separation Rbr because
of the light quark-antiquark pair creation. The pair cre-
ation leads to the collapse of the string, and, as a con-
sequence, to formation of mesonic heavy-light bounds
states,

QQ̄ → QQ̄+ qq̄ → Qq̄ + qQ̄ . (4)

Indeed, at large separations it is more favorable to create
the light pair because of the energy-related considera-
tions: the energy of unbroken state [given by the total
mass 2mQ of the two heavy (or, test) quark sources Q
and Q̄ and the energy of the string (3)] is larger com-
pared to the energy of the broken string state (given by
the mass 2mQq̄ of the created light-heavy mesons Qq̄ and
Q̄q). The critical string-breaking distance Rbr is thus de-
termined by the energy balance:

2mQ + σRbr = 2mQq̄ (5)

(here we neglect a weak Coulomb interaction between
the quarks in the unbroken state and we also disregard
exponentially suppressed van der Waals interaction be-
tween the heavy-light mesons in the broken state). If
R > Rbr, then the string breaks and light-heavy mesons
are formed, Fig. 1 (we consider here a simplest case ignor-
ing a multiple pair production via string fragmentation).

FIG. 1. The conventional string breaking: the QCD string
spanned between the static quark Q and the static antiquark
Q̄ breaks due to light qq̄ pair creation.

The string breaking was observed in lattice simulations
of QCD with two flavors of equal-mass quarks [16]. An
extrapolation of the lattice results to the real QCD gives
the following string breaking distance [16]:

Rbr ≈ 1.13 fm , (6)

where statistical and systematical errors are of the order
of 0.1 fm each.

QCD string breaking at nonzero magnetic field.
A sufficiently strong background magnetic field should

modify the dynamics of the quarks, affecting not only the
chiral features, but also influencing the confining proper-
ties of the system. An anisotropic effect of the magnetic
field on the confining scales of QCD was first pointed out
by Miransky and Shovkovy in Ref. [12].

The energy spectrum of a free relativistic quark in a
uniform magnetic field B follows a typical Landau pat-
tern [17]:

ωn,s‖(p‖) = ±
√

p2‖ +m2
q + (2n+ 1− 2sz)|eq|B , (7)

where mq and eq are, respectively, the mass and the elec-
tric charge of the fermion, p‖ ≡ pz is the momentum
of the fermion along the direction of the magnetic field,
and s‖ = ±1/2 is the projection of the fermion’s spin
onto the axis of the magnetic field. The integer num-
ber n = 0, 1, 2, . . . labels the Landau levels. The signs
“±” in front of the square root in Eq. (7) refer to, re-
spectively, particle and antiparticle branches of the en-
ergy spectrum. The electric charges of the light u and d
quarks are, respectively:

qu = +
2e

3
, qd = −

e

3
. (8)

In a strong magnetic field the lowest Landau level
(LLL) with n = 0 and sz = 1/2 plays a dominant role
in the quark’s motion because the excited states are too
heavy. Indeed, for the soft (low-momentum) fermions the
spin flips, sz → −sz and jumps to the higher states with
n ! 1 are energetically suppressed by the typical gap

δEq ∼
√
2/lq , (9)

where

lq(B) = 1/
√

|eqB| , q = u, d (10)

is the magnetic length of the quark q.
Thus, at the LLL the motion of quarks becomes es-

sentially (1+1) dimensional. The quark moves along the
axis of the magnetic field and the longitudinal dynamics
of a free quark is governed by one-dimensional relativistic
dispersion relation:

ωLLL(p‖) = ±
√

p2‖ +m2
q .

The transverse dynamics (i.e., the motion of the quark in
the plane orthogonal to the magnetic field) is restricted
to a region of a typical size of the order of the magnetic
length (10),

|δr|q " lq(B) . (11)

In QCD the influence of the magnetic field should be-
come significant when the magnetic length (10) becomes
comparable with a typical QCD length scale ΛQCD ∼
1 fm−1 ∼ 200MeV,

lq(B) ' Λ−1
QCD ' Rbr . (12)
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FIG. 1. The vacuum energy as a function as a function of 0 may have a single branch (first drawing) 
or it may have several branches, which cross at particular values of 0 (second drawing). 
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If Eq. (21) has only one solution for given 8, this solution must be CP conserving 
whenever CP is a symmetry of the equation. However, if there are, for example, two 
solutions, it can happen that at 8 = v neither solution is CP invariant, but rather a 
CP transformation exchanges them. In this case, the CP symmetry is spontaneously 
broken at 19 = T. The two solutions must, because of the symmetry, be degenerate in 
energy at 19 = T, and they are quite likely to cross in energy near 0 = rr. 

Let us see how this works in the realistic case 

Actually, an equivalent problem was analyzed by Dashen some years before QCD was 
discovered [ 161, 

In the regime (22) our equations can be written, at 0 = T, 
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into pieces above certain critical separation Rbr because
of the light quark-antiquark pair creation. The pair cre-
ation leads to the collapse of the string, and, as a con-
sequence, to formation of mesonic heavy-light bounds
states,

QQ̄ → QQ̄+ qq̄ → Qq̄ + qQ̄ . (4)

Indeed, at large separations it is more favorable to create
the light pair because of the energy-related considera-
tions: the energy of unbroken state [given by the total
mass 2mQ of the two heavy (or, test) quark sources Q
and Q̄ and the energy of the string (3)] is larger com-
pared to the energy of the broken string state (given by
the mass 2mQq̄ of the created light-heavy mesons Qq̄ and
Q̄q). The critical string-breaking distance Rbr is thus de-
termined by the energy balance:

2mQ + σRbr = 2mQq̄ (5)

(here we neglect a weak Coulomb interaction between
the quarks in the unbroken state and we also disregard
exponentially suppressed van der Waals interaction be-
tween the heavy-light mesons in the broken state). If
R > Rbr, then the string breaks and light-heavy mesons
are formed, Fig. 1 (we consider here a simplest case ignor-
ing a multiple pair production via string fragmentation).

FIG. 1. The conventional string breaking: the QCD string
spanned between the static quark Q and the static antiquark
Q̄ breaks due to light qq̄ pair creation.

The string breaking was observed in lattice simulations
of QCD with two flavors of equal-mass quarks [16]. An
extrapolation of the lattice results to the real QCD gives
the following string breaking distance [16]:

Rbr ≈ 1.13 fm , (6)

where statistical and systematical errors are of the order
of 0.1 fm each.

QCD string breaking at nonzero magnetic field.
A sufficiently strong background magnetic field should

modify the dynamics of the quarks, affecting not only the
chiral features, but also influencing the confining proper-
ties of the system. An anisotropic effect of the magnetic
field on the confining scales of QCD was first pointed out
by Miransky and Shovkovy in Ref. [12].

The energy spectrum of a free relativistic quark in a
uniform magnetic field B follows a typical Landau pat-
tern [17]:

ωn,s‖(p‖) = ±
√

p2‖ +m2
q + (2n+ 1− 2sz)|eq|B , (7)

where mq and eq are, respectively, the mass and the elec-
tric charge of the fermion, p‖ ≡ pz is the momentum
of the fermion along the direction of the magnetic field,
and s‖ = ±1/2 is the projection of the fermion’s spin
onto the axis of the magnetic field. The integer num-
ber n = 0, 1, 2, . . . labels the Landau levels. The signs
“±” in front of the square root in Eq. (7) refer to, re-
spectively, particle and antiparticle branches of the en-
ergy spectrum. The electric charges of the light u and d
quarks are, respectively:

qu = +
2e

3
, qd = −

e

3
. (8)

In a strong magnetic field the lowest Landau level
(LLL) with n = 0 and sz = 1/2 plays a dominant role
in the quark’s motion because the excited states are too
heavy. Indeed, for the soft (low-momentum) fermions the
spin flips, sz → −sz and jumps to the higher states with
n ! 1 are energetically suppressed by the typical gap

δEq ∼
√
2/lq , (9)

where

lq(B) = 1/
√

|eqB| , q = u, d (10)

is the magnetic length of the quark q.
Thus, at the LLL the motion of quarks becomes es-

sentially (1+1) dimensional. The quark moves along the
axis of the magnetic field and the longitudinal dynamics
of a free quark is governed by one-dimensional relativistic
dispersion relation:

ωLLL(p‖) = ±
√

p2‖ +m2
q .

The transverse dynamics (i.e., the motion of the quark in
the plane orthogonal to the magnetic field) is restricted
to a region of a typical size of the order of the magnetic
length (10),

|δr|q " lq(B) . (11)

In QCD the influence of the magnetic field should be-
come significant when the magnetic length (10) becomes
comparable with a typical QCD length scale ΛQCD ∼
1 fm−1 ∼ 200MeV,

lq(B) ' Λ−1
QCD ' Rbr . (12)

Chernodub (2010)

I. The total time for configuration generation on each lattice
size is 8.6 days on 123!48, 58 days on 163!48, and 130
days on 203!48 lattices. An additional 100 days are spent
for the measurement of the hadron masses and the static
potential.

B. Simulation in quenched QCD

While many calculations of the hadron spectrum have
been performed in quenched QCD, comparisons between our
full QCD results and quenched results from other simula-
tions may be subject to systematic uncertainties due to the
difference in the simulation details. We therefore carry out a
set of quenched calculations of the hadron spectrum using
the same lattice actions and simulation parameters as those
for full QCD runs.
Our simulations are performed at !"6.0, where the lat-

tice spacing fixed from m" equals 0.1074#14$ fm. We take
cSW"1.769 which is the value determined non-
perturbatively by the ALPHA Collaboration %35&. Three lat-
tice sizes 123!48, 163!48, and 203!48 are employed in
order to investigate finite-size effects.
Gauge configurations are generated with a combination of

the heat-bath and over-relaxation algorithms. We call four
heat-bath sweeps with a succeeding over-relaxation step an
iteration. We accumulate statistics of 60 000 iterations on

each lattice size. Hadron masses and the static potential are
calculated at every 200 iterations.

III. MEASUREMENT

A. Hadron masses

In measurements in full QCD, we use six values of the
valence quark mass corresponding to the hopping parameter
Kval,i (i"1, . . . ,6)"0.1340, 0.1343, 0.1346, 0.1350,
0.1355, and 0.1358, which cover the range of mPS,val /mV,val
!0.5–0.8. At each sea quark mass, therefore, there is one
value of Kval,i which equals Ksea and is identified as the light
quark mass. Other five values of Kval,i correspond to the
mass of strange quarks treated in the quenched approxima-
tion. In the following, we use the abbreviation ‘‘diagonal
data’’ to represent hadron correlators or masses with a quark
mass combination in which all valence quark masses are
equal to the sea quark mass.
We employ meson operators defined by

M #x $" q̄x
( f )'qx

(g) , '"I ,(5 ,() ,(5() , #6$

where f and g are flavor indices and x is the coordinates on
the lattice. Meson correlators *M (x)M (0)†+ are calculated
for the following 11 combinations of valence quark masses:

FIG. 6. Effective potential energies Veff(r ,t) as a function of temporal separation t at Ksea"0.1350 on 203!48.

FIG. 7. Static quark potential on 203!48. Left and right figures show data at Ksea"0.1340 and 0.1355, respectively.
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FIG. 1. The vacuum energy as a function as a function of 0 may have a single branch (first drawing) 
or it may have several branches, which cross at particular values of 0 (second drawing). 

8 = T CP invariance is more subtle and must be defined as & -+ -& + 2rrni , 
where the nb are arbitrary integers such that C ni = 1. 

If Eq. (21) has only one solution for given 8, this solution must be CP conserving 
whenever CP is a symmetry of the equation. However, if there are, for example, two 
solutions, it can happen that at 8 = v neither solution is CP invariant, but rather a 
CP transformation exchanges them. In this case, the CP symmetry is spontaneously 
broken at 19 = T. The two solutions must, because of the symmetry, be degenerate in 
energy at 19 = T, and they are quite likely to cross in energy near 0 = rr. 

Let us see how this works in the realistic case 

Actually, an equivalent problem was analyzed by Dashen some years before QCD was 
discovered [ 161, 

In the regime (22) our equations can be written, at 0 = T, 

4u + 4d + $8 = =3 
m, sin & = ma sin tjd = m, sin dS . 

(Remember that pUa : pd2 : pS2 = m, : md : m, .) After eliminating 
finds the following equation for +S : 

(23) 

dU and qL , one 

mumd sin #S 
i(mu - ma)” + 2m,m,(l - cos c$J)~I~ = m, sin qSS. 

This equation has only the CP conserving solution sin dS = 0 unless 
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into pieces above certain critical separation Rbr because
of the light quark-antiquark pair creation. The pair cre-
ation leads to the collapse of the string, and, as a con-
sequence, to formation of mesonic heavy-light bounds
states,

QQ̄ → QQ̄+ qq̄ → Qq̄ + qQ̄ . (4)

Indeed, at large separations it is more favorable to create
the light pair because of the energy-related considera-
tions: the energy of unbroken state [given by the total
mass 2mQ of the two heavy (or, test) quark sources Q
and Q̄ and the energy of the string (3)] is larger com-
pared to the energy of the broken string state (given by
the mass 2mQq̄ of the created light-heavy mesons Qq̄ and
Q̄q). The critical string-breaking distance Rbr is thus de-
termined by the energy balance:

2mQ + σRbr = 2mQq̄ (5)

(here we neglect a weak Coulomb interaction between
the quarks in the unbroken state and we also disregard
exponentially suppressed van der Waals interaction be-
tween the heavy-light mesons in the broken state). If
R > Rbr, then the string breaks and light-heavy mesons
are formed, Fig. 1 (we consider here a simplest case ignor-
ing a multiple pair production via string fragmentation).

FIG. 1. The conventional string breaking: the QCD string
spanned between the static quark Q and the static antiquark
Q̄ breaks due to light qq̄ pair creation.

The string breaking was observed in lattice simulations
of QCD with two flavors of equal-mass quarks [16]. An
extrapolation of the lattice results to the real QCD gives
the following string breaking distance [16]:

Rbr ≈ 1.13 fm , (6)

where statistical and systematical errors are of the order
of 0.1 fm each.

QCD string breaking at nonzero magnetic field.
A sufficiently strong background magnetic field should

modify the dynamics of the quarks, affecting not only the
chiral features, but also influencing the confining proper-
ties of the system. An anisotropic effect of the magnetic
field on the confining scales of QCD was first pointed out
by Miransky and Shovkovy in Ref. [12].

The energy spectrum of a free relativistic quark in a
uniform magnetic field B follows a typical Landau pat-
tern [17]:

ωn,s‖(p‖) = ±
√

p2‖ +m2
q + (2n+ 1− 2sz)|eq|B , (7)

where mq and eq are, respectively, the mass and the elec-
tric charge of the fermion, p‖ ≡ pz is the momentum
of the fermion along the direction of the magnetic field,
and s‖ = ±1/2 is the projection of the fermion’s spin
onto the axis of the magnetic field. The integer num-
ber n = 0, 1, 2, . . . labels the Landau levels. The signs
“±” in front of the square root in Eq. (7) refer to, re-
spectively, particle and antiparticle branches of the en-
ergy spectrum. The electric charges of the light u and d
quarks are, respectively:

qu = +
2e

3
, qd = −

e

3
. (8)

In a strong magnetic field the lowest Landau level
(LLL) with n = 0 and sz = 1/2 plays a dominant role
in the quark’s motion because the excited states are too
heavy. Indeed, for the soft (low-momentum) fermions the
spin flips, sz → −sz and jumps to the higher states with
n ! 1 are energetically suppressed by the typical gap

δEq ∼
√
2/lq , (9)

where

lq(B) = 1/
√

|eqB| , q = u, d (10)

is the magnetic length of the quark q.
Thus, at the LLL the motion of quarks becomes es-

sentially (1+1) dimensional. The quark moves along the
axis of the magnetic field and the longitudinal dynamics
of a free quark is governed by one-dimensional relativistic
dispersion relation:

ωLLL(p‖) = ±
√

p2‖ +m2
q .

The transverse dynamics (i.e., the motion of the quark in
the plane orthogonal to the magnetic field) is restricted
to a region of a typical size of the order of the magnetic
length (10),

|δr|q " lq(B) . (11)

In QCD the influence of the magnetic field should be-
come significant when the magnetic length (10) becomes
comparable with a typical QCD length scale ΛQCD ∼
1 fm−1 ∼ 200MeV,

lq(B) ' Λ−1
QCD ' Rbr . (12)

Chernodub (2010)

I. The total time for configuration generation on each lattice
size is 8.6 days on 123!48, 58 days on 163!48, and 130
days on 203!48 lattices. An additional 100 days are spent
for the measurement of the hadron masses and the static
potential.

B. Simulation in quenched QCD

While many calculations of the hadron spectrum have
been performed in quenched QCD, comparisons between our
full QCD results and quenched results from other simula-
tions may be subject to systematic uncertainties due to the
difference in the simulation details. We therefore carry out a
set of quenched calculations of the hadron spectrum using
the same lattice actions and simulation parameters as those
for full QCD runs.
Our simulations are performed at !"6.0, where the lat-

tice spacing fixed from m" equals 0.1074#14$ fm. We take
cSW"1.769 which is the value determined non-
perturbatively by the ALPHA Collaboration %35&. Three lat-
tice sizes 123!48, 163!48, and 203!48 are employed in
order to investigate finite-size effects.
Gauge configurations are generated with a combination of

the heat-bath and over-relaxation algorithms. We call four
heat-bath sweeps with a succeeding over-relaxation step an
iteration. We accumulate statistics of 60 000 iterations on

each lattice size. Hadron masses and the static potential are
calculated at every 200 iterations.

III. MEASUREMENT

A. Hadron masses

In measurements in full QCD, we use six values of the
valence quark mass corresponding to the hopping parameter
Kval,i (i"1, . . . ,6)"0.1340, 0.1343, 0.1346, 0.1350,
0.1355, and 0.1358, which cover the range of mPS,val /mV,val
!0.5–0.8. At each sea quark mass, therefore, there is one
value of Kval,i which equals Ksea and is identified as the light
quark mass. Other five values of Kval,i correspond to the
mass of strange quarks treated in the quenched approxima-
tion. In the following, we use the abbreviation ‘‘diagonal
data’’ to represent hadron correlators or masses with a quark
mass combination in which all valence quark masses are
equal to the sea quark mass.
We employ meson operators defined by

M #x $" q̄x
( f )'qx

(g) , '"I ,(5 ,() ,(5() , #6$

where f and g are flavor indices and x is the coordinates on
the lattice. Meson correlators *M (x)M (0)†+ are calculated
for the following 11 combinations of valence quark masses:

FIG. 6. Effective potential energies Veff(r ,t) as a function of temporal separation t at Ksea"0.1350 on 203!48.

FIG. 7. Static quark potential on 203!48. Left and right figures show data at Ksea"0.1340 and 0.1355, respectively.
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FIG. 1. The vacuum energy as a function as a function of 0 may have a single branch (first drawing) 
or it may have several branches, which cross at particular values of 0 (second drawing). 

8 = T CP invariance is more subtle and must be defined as & -+ -& + 2rrni , 
where the nb are arbitrary integers such that C ni = 1. 

If Eq. (21) has only one solution for given 8, this solution must be CP conserving 
whenever CP is a symmetry of the equation. However, if there are, for example, two 
solutions, it can happen that at 8 = v neither solution is CP invariant, but rather a 
CP transformation exchanges them. In this case, the CP symmetry is spontaneously 
broken at 19 = T. The two solutions must, because of the symmetry, be degenerate in 
energy at 19 = T, and they are quite likely to cross in energy near 0 = rr. 

Let us see how this works in the realistic case 

Actually, an equivalent problem was analyzed by Dashen some years before QCD was 
discovered [ 161, 

In the regime (22) our equations can be written, at 0 = T, 

4u + 4d + $8 = =3 
m, sin & = ma sin tjd = m, sin dS . 

(Remember that pUa : pd2 : pS2 = m, : md : m, .) After eliminating 
finds the following equation for +S : 
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dU and qL , one 
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into pieces above certain critical separation Rbr because
of the light quark-antiquark pair creation. The pair cre-
ation leads to the collapse of the string, and, as a con-
sequence, to formation of mesonic heavy-light bounds
states,

QQ̄ → QQ̄+ qq̄ → Qq̄ + qQ̄ . (4)

Indeed, at large separations it is more favorable to create
the light pair because of the energy-related considera-
tions: the energy of unbroken state [given by the total
mass 2mQ of the two heavy (or, test) quark sources Q
and Q̄ and the energy of the string (3)] is larger com-
pared to the energy of the broken string state (given by
the mass 2mQq̄ of the created light-heavy mesons Qq̄ and
Q̄q). The critical string-breaking distance Rbr is thus de-
termined by the energy balance:

2mQ + σRbr = 2mQq̄ (5)

(here we neglect a weak Coulomb interaction between
the quarks in the unbroken state and we also disregard
exponentially suppressed van der Waals interaction be-
tween the heavy-light mesons in the broken state). If
R > Rbr, then the string breaks and light-heavy mesons
are formed, Fig. 1 (we consider here a simplest case ignor-
ing a multiple pair production via string fragmentation).

FIG. 1. The conventional string breaking: the QCD string
spanned between the static quark Q and the static antiquark
Q̄ breaks due to light qq̄ pair creation.

The string breaking was observed in lattice simulations
of QCD with two flavors of equal-mass quarks [16]. An
extrapolation of the lattice results to the real QCD gives
the following string breaking distance [16]:

Rbr ≈ 1.13 fm , (6)

where statistical and systematical errors are of the order
of 0.1 fm each.

QCD string breaking at nonzero magnetic field.
A sufficiently strong background magnetic field should

modify the dynamics of the quarks, affecting not only the
chiral features, but also influencing the confining proper-
ties of the system. An anisotropic effect of the magnetic
field on the confining scales of QCD was first pointed out
by Miransky and Shovkovy in Ref. [12].

The energy spectrum of a free relativistic quark in a
uniform magnetic field B follows a typical Landau pat-
tern [17]:

ωn,s‖(p‖) = ±
√

p2‖ +m2
q + (2n+ 1− 2sz)|eq|B , (7)

where mq and eq are, respectively, the mass and the elec-
tric charge of the fermion, p‖ ≡ pz is the momentum
of the fermion along the direction of the magnetic field,
and s‖ = ±1/2 is the projection of the fermion’s spin
onto the axis of the magnetic field. The integer num-
ber n = 0, 1, 2, . . . labels the Landau levels. The signs
“±” in front of the square root in Eq. (7) refer to, re-
spectively, particle and antiparticle branches of the en-
ergy spectrum. The electric charges of the light u and d
quarks are, respectively:

qu = +
2e

3
, qd = −

e

3
. (8)

In a strong magnetic field the lowest Landau level
(LLL) with n = 0 and sz = 1/2 plays a dominant role
in the quark’s motion because the excited states are too
heavy. Indeed, for the soft (low-momentum) fermions the
spin flips, sz → −sz and jumps to the higher states with
n ! 1 are energetically suppressed by the typical gap

δEq ∼
√
2/lq , (9)

where

lq(B) = 1/
√

|eqB| , q = u, d (10)

is the magnetic length of the quark q.
Thus, at the LLL the motion of quarks becomes es-

sentially (1+1) dimensional. The quark moves along the
axis of the magnetic field and the longitudinal dynamics
of a free quark is governed by one-dimensional relativistic
dispersion relation:

ωLLL(p‖) = ±
√

p2‖ +m2
q .

The transverse dynamics (i.e., the motion of the quark in
the plane orthogonal to the magnetic field) is restricted
to a region of a typical size of the order of the magnetic
length (10),

|δr|q " lq(B) . (11)

In QCD the influence of the magnetic field should be-
come significant when the magnetic length (10) becomes
comparable with a typical QCD length scale ΛQCD ∼
1 fm−1 ∼ 200MeV,

lq(B) ' Λ−1
QCD ' Rbr . (12)
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I. The total time for configuration generation on each lattice
size is 8.6 days on 123!48, 58 days on 163!48, and 130
days on 203!48 lattices. An additional 100 days are spent
for the measurement of the hadron masses and the static
potential.

B. Simulation in quenched QCD

While many calculations of the hadron spectrum have
been performed in quenched QCD, comparisons between our
full QCD results and quenched results from other simula-
tions may be subject to systematic uncertainties due to the
difference in the simulation details. We therefore carry out a
set of quenched calculations of the hadron spectrum using
the same lattice actions and simulation parameters as those
for full QCD runs.
Our simulations are performed at !"6.0, where the lat-

tice spacing fixed from m" equals 0.1074#14$ fm. We take
cSW"1.769 which is the value determined non-
perturbatively by the ALPHA Collaboration %35&. Three lat-
tice sizes 123!48, 163!48, and 203!48 are employed in
order to investigate finite-size effects.
Gauge configurations are generated with a combination of

the heat-bath and over-relaxation algorithms. We call four
heat-bath sweeps with a succeeding over-relaxation step an
iteration. We accumulate statistics of 60 000 iterations on

each lattice size. Hadron masses and the static potential are
calculated at every 200 iterations.

III. MEASUREMENT

A. Hadron masses

In measurements in full QCD, we use six values of the
valence quark mass corresponding to the hopping parameter
Kval,i (i"1, . . . ,6)"0.1340, 0.1343, 0.1346, 0.1350,
0.1355, and 0.1358, which cover the range of mPS,val /mV,val
!0.5–0.8. At each sea quark mass, therefore, there is one
value of Kval,i which equals Ksea and is identified as the light
quark mass. Other five values of Kval,i correspond to the
mass of strange quarks treated in the quenched approxima-
tion. In the following, we use the abbreviation ‘‘diagonal
data’’ to represent hadron correlators or masses with a quark
mass combination in which all valence quark masses are
equal to the sea quark mass.
We employ meson operators defined by

M #x $" q̄x
( f )'qx

(g) , '"I ,(5 ,() ,(5() , #6$

where f and g are flavor indices and x is the coordinates on
the lattice. Meson correlators *M (x)M (0)†+ are calculated
for the following 11 combinations of valence quark masses:

FIG. 6. Effective potential energies Veff(r ,t) as a function of temporal separation t at Ksea"0.1350 on 203!48.

FIG. 7. Static quark potential on 203!48. Left and right figures show data at Ksea"0.1340 and 0.1355, respectively.
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FIG. 1. The vacuum energy as a function as a function of 0 may have a single branch (first drawing) 
or it may have several branches, which cross at particular values of 0 (second drawing). 

8 = T CP invariance is more subtle and must be defined as & -+ -& + 2rrni , 
where the nb are arbitrary integers such that C ni = 1. 

If Eq. (21) has only one solution for given 8, this solution must be CP conserving 
whenever CP is a symmetry of the equation. However, if there are, for example, two 
solutions, it can happen that at 8 = v neither solution is CP invariant, but rather a 
CP transformation exchanges them. In this case, the CP symmetry is spontaneously 
broken at 19 = T. The two solutions must, because of the symmetry, be degenerate in 
energy at 19 = T, and they are quite likely to cross in energy near 0 = rr. 

Let us see how this works in the realistic case 

Actually, an equivalent problem was analyzed by Dashen some years before QCD was 
discovered [ 161, 

In the regime (22) our equations can be written, at 0 = T, 

4u + 4d + $8 = =3 
m, sin & = ma sin tjd = m, sin dS . 

(Remember that pUa : pd2 : pS2 = m, : md : m, .) After eliminating 
finds the following equation for +S : 

(23) 

dU and qL , one 

mumd sin #S 
i(mu - ma)” + 2m,m,(l - cos c$J)~I~ = m, sin qSS. 

This equation has only the CP conserving solution sin dS = 0 unless 

mumd>m,Imd--U 

(24) 

(25) 

f(θ)

f0(θ) f1(θ)
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f0(π + ϵ) f0(π + ϵ)
→ f1(π + ϵ)

4d SU(N) YM has an topological object 
called a bag or a domain-wall

[Luscher (1978)].

Interpretation
• Sub-volume method seems to trace an original 

branch even after the crossing point is passed.

2

into pieces above certain critical separation Rbr because
of the light quark-antiquark pair creation. The pair cre-
ation leads to the collapse of the string, and, as a con-
sequence, to formation of mesonic heavy-light bounds
states,

QQ̄ → QQ̄+ qq̄ → Qq̄ + qQ̄ . (4)

Indeed, at large separations it is more favorable to create
the light pair because of the energy-related considera-
tions: the energy of unbroken state [given by the total
mass 2mQ of the two heavy (or, test) quark sources Q
and Q̄ and the energy of the string (3)] is larger com-
pared to the energy of the broken string state (given by
the mass 2mQq̄ of the created light-heavy mesons Qq̄ and
Q̄q). The critical string-breaking distance Rbr is thus de-
termined by the energy balance:

2mQ + σRbr = 2mQq̄ (5)

(here we neglect a weak Coulomb interaction between
the quarks in the unbroken state and we also disregard
exponentially suppressed van der Waals interaction be-
tween the heavy-light mesons in the broken state). If
R > Rbr, then the string breaks and light-heavy mesons
are formed, Fig. 1 (we consider here a simplest case ignor-
ing a multiple pair production via string fragmentation).

FIG. 1. The conventional string breaking: the QCD string
spanned between the static quark Q and the static antiquark
Q̄ breaks due to light qq̄ pair creation.

The string breaking was observed in lattice simulations
of QCD with two flavors of equal-mass quarks [16]. An
extrapolation of the lattice results to the real QCD gives
the following string breaking distance [16]:

Rbr ≈ 1.13 fm , (6)

where statistical and systematical errors are of the order
of 0.1 fm each.

QCD string breaking at nonzero magnetic field.
A sufficiently strong background magnetic field should

modify the dynamics of the quarks, affecting not only the
chiral features, but also influencing the confining proper-
ties of the system. An anisotropic effect of the magnetic
field on the confining scales of QCD was first pointed out
by Miransky and Shovkovy in Ref. [12].

The energy spectrum of a free relativistic quark in a
uniform magnetic field B follows a typical Landau pat-
tern [17]:

ωn,s‖(p‖) = ±
√

p2‖ +m2
q + (2n+ 1− 2sz)|eq|B , (7)

where mq and eq are, respectively, the mass and the elec-
tric charge of the fermion, p‖ ≡ pz is the momentum
of the fermion along the direction of the magnetic field,
and s‖ = ±1/2 is the projection of the fermion’s spin
onto the axis of the magnetic field. The integer num-
ber n = 0, 1, 2, . . . labels the Landau levels. The signs
“±” in front of the square root in Eq. (7) refer to, re-
spectively, particle and antiparticle branches of the en-
ergy spectrum. The electric charges of the light u and d
quarks are, respectively:

qu = +
2e

3
, qd = −

e

3
. (8)

In a strong magnetic field the lowest Landau level
(LLL) with n = 0 and sz = 1/2 plays a dominant role
in the quark’s motion because the excited states are too
heavy. Indeed, for the soft (low-momentum) fermions the
spin flips, sz → −sz and jumps to the higher states with
n ! 1 are energetically suppressed by the typical gap

δEq ∼
√
2/lq , (9)

where

lq(B) = 1/
√

|eqB| , q = u, d (10)

is the magnetic length of the quark q.
Thus, at the LLL the motion of quarks becomes es-

sentially (1+1) dimensional. The quark moves along the
axis of the magnetic field and the longitudinal dynamics
of a free quark is governed by one-dimensional relativistic
dispersion relation:

ωLLL(p‖) = ±
√

p2‖ +m2
q .

The transverse dynamics (i.e., the motion of the quark in
the plane orthogonal to the magnetic field) is restricted
to a region of a typical size of the order of the magnetic
length (10),

|δr|q " lq(B) . (11)

In QCD the influence of the magnetic field should be-
come significant when the magnetic length (10) becomes
comparable with a typical QCD length scale ΛQCD ∼
1 fm−1 ∼ 200MeV,

lq(B) ' Λ−1
QCD ' Rbr . (12)

Chernodub (2010)

I. The total time for configuration generation on each lattice
size is 8.6 days on 123!48, 58 days on 163!48, and 130
days on 203!48 lattices. An additional 100 days are spent
for the measurement of the hadron masses and the static
potential.

B. Simulation in quenched QCD

While many calculations of the hadron spectrum have
been performed in quenched QCD, comparisons between our
full QCD results and quenched results from other simula-
tions may be subject to systematic uncertainties due to the
difference in the simulation details. We therefore carry out a
set of quenched calculations of the hadron spectrum using
the same lattice actions and simulation parameters as those
for full QCD runs.
Our simulations are performed at !"6.0, where the lat-

tice spacing fixed from m" equals 0.1074#14$ fm. We take
cSW"1.769 which is the value determined non-
perturbatively by the ALPHA Collaboration %35&. Three lat-
tice sizes 123!48, 163!48, and 203!48 are employed in
order to investigate finite-size effects.
Gauge configurations are generated with a combination of

the heat-bath and over-relaxation algorithms. We call four
heat-bath sweeps with a succeeding over-relaxation step an
iteration. We accumulate statistics of 60 000 iterations on

each lattice size. Hadron masses and the static potential are
calculated at every 200 iterations.

III. MEASUREMENT

A. Hadron masses

In measurements in full QCD, we use six values of the
valence quark mass corresponding to the hopping parameter
Kval,i (i"1, . . . ,6)"0.1340, 0.1343, 0.1346, 0.1350,
0.1355, and 0.1358, which cover the range of mPS,val /mV,val
!0.5–0.8. At each sea quark mass, therefore, there is one
value of Kval,i which equals Ksea and is identified as the light
quark mass. Other five values of Kval,i correspond to the
mass of strange quarks treated in the quenched approxima-
tion. In the following, we use the abbreviation ‘‘diagonal
data’’ to represent hadron correlators or masses with a quark
mass combination in which all valence quark masses are
equal to the sea quark mass.
We employ meson operators defined by

M #x $" q̄x
( f )'qx

(g) , '"I ,(5 ,() ,(5() , #6$

where f and g are flavor indices and x is the coordinates on
the lattice. Meson correlators *M (x)M (0)†+ are calculated
for the following 11 combinations of valence quark masses:

FIG. 6. Effective potential energies Veff(r ,t) as a function of temporal separation t at Ksea"0.1350 on 203!48.

FIG. 7. Static quark potential on 203!48. Left and right figures show data at Ksea"0.1340 and 0.1355, respectively.
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FIG. 1. The vacuum energy as a function as a function of 0 may have a single branch (first drawing) 
or it may have several branches, which cross at particular values of 0 (second drawing). 

8 = T CP invariance is more subtle and must be defined as & -+ -& + 2rrni , 
where the nb are arbitrary integers such that C ni = 1. 

If Eq. (21) has only one solution for given 8, this solution must be CP conserving 
whenever CP is a symmetry of the equation. However, if there are, for example, two 
solutions, it can happen that at 8 = v neither solution is CP invariant, but rather a 
CP transformation exchanges them. In this case, the CP symmetry is spontaneously 
broken at 19 = T. The two solutions must, because of the symmetry, be degenerate in 
energy at 19 = T, and they are quite likely to cross in energy near 0 = rr. 

Let us see how this works in the realistic case 

Actually, an equivalent problem was analyzed by Dashen some years before QCD was 
discovered [ 161, 

In the regime (22) our equations can be written, at 0 = T, 

4u + 4d + $8 = =3 
m, sin & = ma sin tjd = m, sin dS . 

(Remember that pUa : pd2 : pS2 = m, : md : m, .) After eliminating 
finds the following equation for +S : 

(23) 

dU and qL , one 

mumd sin #S 
i(mu - ma)” + 2m,m,(l - cos c$J)~I~ = m, sin qSS. 

This equation has only the CP conserving solution sin dS = 0 unless 

mumd>m,Imd--U 

(24) 

(25) 

f(θ)

f0(θ) f1(θ)
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Summary and conclusion
• We have developed a sub-volume method, which enables us to calculate  up to 

 at  in SU(2) Yang-Mills theory.


• Combining with the theory requirement  , our result provides 
with the evidence for spontaneous CPV at .

⇒ 4d SU(2) YM belongs to large N class (not like  model).


• The same method yields the result consistent with the DIGA,   , 
above  within large systematic uncertainty.


• Application to QCD is straightforward.

f(θ)
θ ∼ 3π/2 T = 0

f(π − θ) = f(π + θ)
T = 0

CP1

f(θ) ∼ χ(1 − cos θ)
Tc

13



Future studies

• exploring the location of 


• applying the sub-volume method to the finite 
density system.

Tc(θ)

T

θ
2ππ

Tc

SU(N) with  N = 2, ⋯ ∞

C
P

confine

deconfine
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Intuitive understanding of periodic behavior of  f(θ)

16

: instanton

: anti-instanton

Vsub

Qsub = + 1

Vsub

Qsub = 0

Vsub

Qsub = + 1

In this case,   is almost always integer if  .


⇒     ⇒  -periodicity is expected.

Qsub ρ4
instanton ≪ Vsub

f(θ)
θ≈2π

∼ 0 2π

f(θ) = − lim
Vsub→∞

1
Vsub

ln⟨e−iθQsub⟩ = − lim
Vsub→∞

1
Vsub

ln⟨ cos(θQsub) ⟩



-vacuumθ
• The vacuum can have an integer winding number, labeled by .


• But, this label is changed by gauge transformation, e.g. .


• Define    ⟺   


• 


                  


                  

|n⟩

U(1) |n⟩ → |n + 1⟩

|θ⟩ =
+∞

∑
n−∞

einθ |n⟩ U(1) |θ⟩ = e−iθ |θ⟩

⟨θ+ |θ−⟩J = ∑
m,n

einθe−imθ⟨m+ |n−⟩J = ∑
Q

eiθQ ∑
m

⟨m+ |m− + Q⟩J

= ∑
Q

∫∈Q
𝒟A e−Sg+iθQ+ ∫ J⋅Aδ(Q −

g2

32π2 ∫ d4xGG̃)
= ∫ 𝒟A e−Sg+iθQ+ ∫ J⋅A

17



Expected behavior of  as a function of fsub(θ) Vsub

18

leaved in a somewhat labyrinthine arrangement. Figure 5

shows a plot of f!x
" # sign!q!x

"" on a C
P

3 configuration

on a 30$ 30 lattice. As is the case in QCD, the presence of

thin alternating-sig
n-coherent regions of codimension one

is in some sense the maximum amount of long-range order

allowable by the required (and observed) negativity of the

correlator for nonzero separation.

To constru
ct a quantitative measure of coherence, we

determine the fraction of the lattice volume occupied by

the n
largest stru

ctures on each configuration as a function

of n. Figure 6 shows the results for both the overlap q!x
"

distri
bution and the log-plaquette

operator qP
!x".

Also

shown for compariso
n is the same plot for a set of random

configurations. These results are from a large ensemble of

CP
3 configurations on a 40$ 40 lattice with

! #
1:0

(correlation length %
5). We see that the overlap definition

of q!x
" exhibits a clear indication of coherence, e.g. the

typical largest stru
ctures are much larger than those in a

random configuration. Somewhat surprisin
gly, the pla-

quette
phase

definition actually
exhibits

less stru
cture

than the purely random distri
butions. This is an effect of

the nearest-n
eighbor anticorrelation for the plaquette

phase.
A. Topological charge correlator

In the continuum, the Euclidean topological charge cor-

relator must be negative outsid
e of a positiv

e contact term

at x #
0. On the lattice, the overlap q!x

" is not ultralocal,

but it can be argued that it becomes local in the continuum

limit, at least for sufficiently
smooth gauge fields [10].

Spectral arguments only require the correlator to be nega-

tive when the two operators are nonoverlapping. The cor-

relator hq!
x"q!0

"i is shown in Fig. 7 for C
P

3 for several

values of!. We see that the correlator consists
of a positiv

e

core at x &
!!!
2p , and a negative short-ra

nge tail starting at

FIG. 5 (color online).
Plot of the function sign!q!x

"" for a C
P

3

configuration on a 30$ 30 lattice at !
# 1:2.
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FIG. 6 (color online).
Percent of the total volume occupied by

the n
largest stru

ctures for the overlap and plaquette distri
butions

of the topological charge. For compariso
n, we show the result for

a random distri
bution of numbers.
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FIG. 7 (color online).
Topological charge correlator for C

P
3

(lattice units).

FIG. 4 (color online).
Two typical largest stru

ctures for CP
3 on

a 50$ 50 lattice at !
# 1:2.
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θ = 0

Vfull Ahmad, et al. (2005)

θ ≠ 0Vsub

• It must be  .


• As long as  ,   is expected to show the scaling 

behavior,  .


• Buch a behavior will end as  , where 
 . Thus,  is required.


• On the other hand, the method fails when   because 
 becomes ill-defined.


• Crucial question:

 satisfying  and  exists ?

Vsub ≫ l4
dyn

Vsub ≫ l4
dyn fsub(θ)

fsub(θ) = f(θ)+
s(θ)

l
+ O(1/l2)

Vsub → Vfull
Qsub → Qfull ∈ ℤ Vsub ≪ Vfull

|θ Qsub | ∼ π
fsub(θ) ∝ ln⟨ cos(θQsub) ⟩

Vsub l4
dyn ≪ Vsub ≪ Vfull |θ Qsub | < π



Similarity to the static potential calculation
In the static potential calculation, Wilson loop is inserted.








In sub-volume method, instead a operator extending over 
subvolume is inserted.


 is analogous to σ in the static potential.

Z( □ )
Z(1)

=
1

Z(1) ∫𝒟U Tr[ei∮ A]e−SQCD = ⟨Tr[ei∮ A]⟩ → e−V(𝒜)

V(𝒜) = − lim
𝒜→∞

ln⟨Tr[ei∮ A]⟩ = σ𝒜 + ⋯

f(θ)

R

T

I. The total time for configuration generation on each lattice
size is 8.6 days on 123!48, 58 days on 163!48, and 130
days on 203!48 lattices. An additional 100 days are spent
for the measurement of the hadron masses and the static
potential.

B. Simulation in quenched QCD

While many calculations of the hadron spectrum have
been performed in quenched QCD, comparisons between our
full QCD results and quenched results from other simula-
tions may be subject to systematic uncertainties due to the
difference in the simulation details. We therefore carry out a
set of quenched calculations of the hadron spectrum using
the same lattice actions and simulation parameters as those
for full QCD runs.
Our simulations are performed at !"6.0, where the lat-

tice spacing fixed from m" equals 0.1074#14$ fm. We take
cSW"1.769 which is the value determined non-
perturbatively by the ALPHA Collaboration %35&. Three lat-
tice sizes 123!48, 163!48, and 203!48 are employed in
order to investigate finite-size effects.
Gauge configurations are generated with a combination of

the heat-bath and over-relaxation algorithms. We call four
heat-bath sweeps with a succeeding over-relaxation step an
iteration. We accumulate statistics of 60 000 iterations on

each lattice size. Hadron masses and the static potential are
calculated at every 200 iterations.

III. MEASUREMENT

A. Hadron masses

In measurements in full QCD, we use six values of the
valence quark mass corresponding to the hopping parameter
Kval,i (i"1, . . . ,6)"0.1340, 0.1343, 0.1346, 0.1350,
0.1355, and 0.1358, which cover the range of mPS,val /mV,val
!0.5–0.8. At each sea quark mass, therefore, there is one
value of Kval,i which equals Ksea and is identified as the light
quark mass. Other five values of Kval,i correspond to the
mass of strange quarks treated in the quenched approxima-
tion. In the following, we use the abbreviation ‘‘diagonal
data’’ to represent hadron correlators or masses with a quark
mass combination in which all valence quark masses are
equal to the sea quark mass.
We employ meson operators defined by

M #x $" q̄x
( f )'qx

(g) , '"I ,(5 ,() ,(5() , #6$

where f and g are flavor indices and x is the coordinates on
the lattice. Meson correlators *M (x)M (0)†+ are calculated
for the following 11 combinations of valence quark masses:

FIG. 6. Effective potential energies Veff(r ,t) as a function of temporal separation t at Ksea"0.1350 on 203!48.

FIG. 7. Static quark potential on 203!48. Left and right figures show data at Ksea"0.1340 and 0.1355, respectively.
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About smearing

• Need to numerically calculate   on the lattice


• Raw configurations are contaminated by local lumps.


• Smearing (= smoothing a configuration) removes such short-distance artifacts.


• However, at the same time, smearing may alter relevant topological excitations, too.


• We studied this point and developed the procedure to restore relevant information. 
[Kitano, NY, Yamazaki (2021)]

- calculate an observable every 5 steps of the smearing


- extrapolate those back to ,   

q(x) =
1

64π2
ϵμνρσFa

μνFa
ρσ

nAPE → 0 ⟨O⟩ = lim
nAPE→0

⟨O(nAPE)⟩

20



 limit at nAPE → 0 T = 0

• Fit range  determined in 
[Kitano, NY, Yamazaki (2021)].


• Linear fit works well.


• Monotonic function   

nAPE = [20, 40]

f(π) < f(3π/2)

4
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FIG. 5: The linear extrapolation of a4f(θ) to nAPE = 0.
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FIG. 6: f(θ) (top) and df(θ)/dθ (bottom).

Discussion and Conclusion
The two facts in SU(N) gauge theory, f(θ) = f(−θ)

and the f(θ) = f(θ + 2π), leads to f(π + θ) = f(π − θ).
However, f(θ) at T = 0 in Fig. 6 does not respect it.
The subvolume method is equivalent to the modification
of the θ term inside the subvolume. If the difference of
θ is a multiple of 2π and the calculation respects the
2π-periodicity, the free energy would scale as the sur-
face area of the subvolume when the subvolume is large
enough. The lack of 2π periodicity in the free energy
density should thus be interpreted as the presence of a

-20

-10

 0
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 20

 30

 40

0 π/2 π 3π/2 2π

s
1
(θ

) 
/ 

a
 χ

θ

T = 0
1.2 Tc

∫dθ ds1/dθ

FIG. 7: Comparison of θ dependence of the surface tension
s1(θ) at T = 0 and 1.2Tc.

meta-stable vacuum for a fixed value of θ (except for
θ = π where two vacua interchanged by CP are degen-
erate and stable). The absence of the transition to the
lower energy state, i.e. the transition from the domain
to the domain-wall in the present case, has an analog in
the static potential calculation, the absence of the string
breaking. Since the method based on an operator inser-
tion seems to trace an original branch even after a level
crossing with another branch, it will miss the first or-
der phase transition while we expect that it can capture
second oder transitions in principle because meta-stable
states do not exist. In reality, the meta-stable vacuum
should eventually decay into the stable one by the cre-
ation of a dynamical domain wall that attaches to the in-
terface. Although such a behavior could not be seen with
the subvolume method, it is interesting to learn that such
a domain wall object actually exists in the Yang-Mills
theory [24].

Although the number of data points are limited, the
infinite volume extrapolations assuming the linear form
reproduces the qualitative behavior of the instanton pre-
diction at high temperatures. It is then expected that
the same procedure works also at T = 0. The calcula-
tion passes a consistency check and finds the free energy
density at T = 0, which is substantially different from
those at high temperatures. We thus conclude that CP
is spontaneously broken in the vacuum in the 4d SU(2)
Yang-Mills theory at θ = π [42] and that there is a phase
transition to recover the CP symmetry at some finite
temperature.

While numerical results are not accurate past θ ∼
3π/2, there are indications that the derivative df(θ)/dθ
decreases past θ = π, and becomes smaller near θ ∼ 2π.
This is consistent with the expectation [13] that there
are two metastable branches of the SU(2) theory, each of
which has 4π periodicity.

In summary, we developed the subvolume method for
the 4d Yang-Mills theory, with which one can extract
qualitative features of the free energy densities for finite
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Learning from 2d  modelCPN−1

• Good testing ground for 4d  because of many similarities


[asymptotic freedom, dynamical mass gap, instanton,  expandable, …]


• Gapped and CP broken at  for .


• But  ( i.e.  ) is exceptional !


⇒ gapless and no CPV at    (⟺Haldane conjecture)

SU(N)

1/N

θ = π N ≥ 3

CP1 N = 2

θ = π

ℒ =
N
2g

Dμz Dμz − iθq

q(x) =
1

2π
ϵμν∂μAν =

i
2π

ϵμνDμz Dμz

z : N-component complex scalar field with z̄z = 1

Dμ = ∂μ + iAμ , Aμ = iz̄∂μz

22



 in 2d  model (lattice results)f(θ) CPN−1

23

 is indeed consistent with the DIGA,




while others indicate CPV.

CP1

f(θ) = χ(1 − cos θ)




              





e−Vsub fsub(θ) =
1

Z[0] ∫𝒟z𝒟z̄ e−SCP(N−1)−iθQsub

= ⟨e−iθQsub⟩

Qsub = ∫x∈Vsub

d2x
1

2π
ϵμν∂μAν → Qlat

sub =
−i
2π ∑

x∈Vsub

ln Px

(Px : plaquette)

○ : 

◻︎: 


× : 

CP9

CP5

CP1

as !t ~"
2, while forCP1 the small instantons cause !t="

2 to
diverge in the continuum limit.] The calculations were
done on both 50! 50 and 100! 100 lattices and the effect
of finite volume was found to be negligible. The results
plotted in Fig. 1 indicate that, by studying these three
models, we cover the entire range of topological charge
dynamics from CP1 which is instanton dominated, to CP9

where bulk topological properties are described with rea-
sonable accuracy by the large N approximation. This as-
sertion is further supported by the results for # dependence
of the vacuum energy presented in this paper. [Of course
the convergence of the largeN expansion for more detailed
topological properties, e.g. topological charge correlators,
could be much slower than for bulk quantities like suscep-
tibility and "ð#Þ.]

One of the most striking features of the Monte Carlo
results for fractionally charged Wilson loops is the differ-
ence between the behavior in CP1 versus that in CP5 and
CP9 in the region $< #< 2$. Since "ð#Þ is periodic and
an even function of #, its value in this region should be
determined by its value in the range 0< #< $ by reflec-
tion around $,

"ð#Þ ¼ "ð2$% #Þ: (7)

As seen in Fig. 2, the measured value of "ð#Þ for CP1 (!’s)
is, within errors, nicely periodic and symmetric around
# ¼ $, and in fact fits well to the dilute instanton gas
prediction (4) throughout the range 0< #< 2$. On the
other hand, for CP5 (h’s) and CP9 (&’s), as shown in
Fig. 2, the coefficient extracted from a simple area-law fit
to the Wilson loops continues to rise beyond # ¼ $, vio-
lating the expected symmetry (7). We will argue that the
behavior of CP5 and CP9 for #> $ is an effect of having

two nearly degenerate ground states. This behavior can be
easily understood in terms of the large N picture [6], in
which there are two nearly degenerate quasivacua when
# ' $. One vacuum has a background electric field
#=2$ ' þ 1

2 . The other is the one in which a unit of flux
has been screened, so that #=2$ ' % 1

2 . A Wilson loop
with length R in the spatial direction and T in the time
direction can be interpreted as the T-dependent propagator
of a ‘‘string’’ of length R, consisting of a þq and a %q
charge with an amount q ¼ #=2$ of electric flux between
them. This state has a large overlap with the vacuum state
containing background flux of #=2$. But for #> $, the
true ground state is the one where the flux has been
screened by one unit to #=2$% 1. In order for the
Wilson line to couple to this screened vacuum, the flux
string must break via vacuum polarization. It is thus ex-
pected that, for #> $, the Wilson line will have a much
larger overlap with the false (unscreened) vacuum than
with the true (screened) vacuum. As a result, the Wilson
loop area law tends to be determined by the energy of the
unscreened vacuum, even for #> $ where the screened
vacuum has lower energy. Since the Wilson line couples
preferentially to the unscreened vacuum, we expect that
our results for "ð#Þ are measuring the true ground state
energy throughout the range 0< #< $, where the
unscreened vacuum is the true vacuum. By invoking the
reflection symmetry (7) we obtain a complete determina-
tion of "ð#Þ.
The results for "ð#Þ for CP1 are plotted for 0< #< $ in

Fig. 3. With the topological susceptibility fixed to the value
obtained from the fluctuation of the integer-valued global
topological charge, !t ¼ h%2i=V, the solid line is a zero-
parameter fit to the dilute instanton gas formula (4). Also
plotted (dotted line) is the leading-order largeN prediction,

"ð#Þ % "ð0Þ ¼ 1
2!t#

2: (8)

The corresponding results for CP5 and CP9 are shown in
Figs. 4 and 5. The solid and dotted curves are again the
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FIG. 2 (color online). The free energy density "ð#Þ for CP1

(!’s), CP5 (h’s), and CP9 (&’s) as measured from fractionally
charged Wilson loops. The lower and upper curves are the
instanton gas and large N predictions, normalized to the same
topological susceptibility. Note that, for #=2$> 1
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First two coefficients

χ/σ2 = C∞ +
c2

N2
+ O(1/N4)
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Figure 11: Results for C ≡ χ/σ2 versus 1/N2, for N = 3, 4, 5, 6, 8. We show MC data taken from Refs. [195]
(filled circle, by cooling), [375] (square, by cooling), [379] (diamonds, by cooling), [164] (left triangle, by
overlap), [191] (cross, by overlap), [30] (triangle, by heating), [222] (open circle, by HYP smoothing). The
result on the y-axis, indicated by an asterisk, shows the extrapolations to N = ∞ obtained in Ref. [195].
Some data have been slightly shifted along the x-axis to make them more visible.
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Figure 12: The instanton size density, D(ρ), for N = 2(#), 3(+), 4(◦), 8(•) on 164 lattices with a $ 1/8Tc.
From Ref. [379].
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Figure 13: Plot of N2b2 versus N , for N = 3, 4, 6. We show MC data taken from Ref. [195] (circles, by
cooling), from Ref. [199] (square, by heating), from Ref. [277] (diamond, by overlap). Some data for N = 3
have been slightly shifted along the x-axis to make them more visible.

Overall, these results support the scenario obtained by general large-N scaling arguments, which indicate
θ̄ ≡ θ/N as the relevant Lagrangian parameter in the large-N expansion. They also show that N = 3 is
already in the regime of the large-N behavior. For N ≥ 3 the simple quadratic form

F (θ)− F (0) ≈
1

2
χθ2 (6.8)

provides a good approximation of the dependence on θ for a relatively large range of values of θ around
θ = 0.

6.4 θ dependence at finite temperature and across the phase transition

Another interesting issue concerns the behavior of topological properties at finite temperature, and in partic-
ular their change at the finite-temperature deconfining transition, which is first order for N ≥ 3, and second
order for N = 2; see e.g. Refs. [376, 377, 380] and references therein.

At high temperature, T % Tc where Tc is the transition temperature, one can compute the θ dependence
semiclassically. At zero temperature semiclassical calculations fail because of the absence of any large-
distance cutoff on the instanton length scale [116]. However, at finite temperature, the temperature T , which
is related to the size of the Euclidean time dimension, is expected to act as a natural infrared cutoff [285].
Consequently, at sufficiently high temperature, say T % Tc , one may compute the θ dependence from the
one-loop contribution of instantons to the functional integral, obtaining [285]

F (θ)− F (0) ∼ (1− cosθ)T 4 exp[−8π2/g2(T )], (6.9)

where g(T ) is the running coupling constant at the scale T . In the case of a pure gauge theory,

8π2

g2(T )
≈

11

3
N lnT (6.10)

asymptotically at large T . This shows that the θ dependence gets suppressed at high temperature.
The finite-temperature behavior of the topological susceptibility, and in particular its behavior across

the transition, has been investigated in several numerical MC works, see Refs. [30,101,174,196,206,226,248,
270–272,379, 515], using different methods to determine the topological susceptibility.

Results for the SU(3) gauge theories can be found in Refs. [30,226,271,379]. They have been obtained by
the heating method [30], the cooling method [379], and the overlap method [226,271], and give substantially
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Overall, these results support the scenario obtained by general large-N scaling arguments, which indicate
θ̄ ≡ θ/N as the relevant Lagrangian parameter in the large-N expansion. They also show that N = 3 is
already in the regime of the large-N behavior. For N ≥ 3 the simple quadratic form

F (θ)− F (0) ≈
1

2
χθ2 (6.8)

provides a good approximation of the dependence on θ for a relatively large range of values of θ around
θ = 0.

6.4 θ dependence at finite temperature and across the phase transition

Another interesting issue concerns the behavior of topological properties at finite temperature, and in partic-
ular their change at the finite-temperature deconfining transition, which is first order for N ≥ 3, and second
order for N = 2; see e.g. Refs. [376, 377, 380] and references therein.

At high temperature, T % Tc where Tc is the transition temperature, one can compute the θ dependence
semiclassically. At zero temperature semiclassical calculations fail because of the absence of any large-
distance cutoff on the instanton length scale [116]. However, at finite temperature, the temperature T , which
is related to the size of the Euclidean time dimension, is expected to act as a natural infrared cutoff [285].
Consequently, at sufficiently high temperature, say T % Tc , one may compute the θ dependence from the
one-loop contribution of instantons to the functional integral, obtaining [285]

F (θ)− F (0) ∼ (1− cosθ)T 4 exp[−8π2/g2(T )], (6.9)

where g(T ) is the running coupling constant at the scale T . In the case of a pure gauge theory,

8π2

g2(T )
≈

11

3
N lnT (6.10)

asymptotically at large T . This shows that the θ dependence gets suppressed at high temperature.
The finite-temperature behavior of the topological susceptibility, and in particular its behavior across

the transition, has been investigated in several numerical MC works, see Refs. [30,101,174,196,206,226,248,
270–272,379, 515], using different methods to determine the topological susceptibility.

Results for the SU(3) gauge theories can be found in Refs. [30,226,271,379]. They have been obtained by
the heating method [30], the cooling method [379], and the overlap method [226,271], and give substantially
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Finite temperature
f(θ) ∼ T4 exp( −

8π2

g2(T) )(1 − cos θ) ∼ T4− 11N
3 Λ11N

3 (1 − cos θ)
∝ χ(T ) = θ2/2(1 + b2θ2 + b4θ4 + ⋯)

⇒ b2 = − 1/12, ⋯
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Figure 14: The ratio R(T ) ≡ χ(T )/χ(T = 0) as a function of the reduced temperature t ≡ T/Tc − 1.
For each SU(N) gauge theory, these curves are expected to converge to a continuum curve when Lt → ∞,
where Lt is the length, in units of the lattice spacing, of the lattice along the Euclidean time direction. From
Ref. [196].

consistent results. They show that the topological properties, and in particular the topological susceptibility
χ, vary very little up to T ! Tc. They change across the transition, where χ shows a significant decrease.
For example [271], χ decreases by approximately a factor 13 as the temperature is increased from 0.88Tc to
1.31Tc. Then, at high temperature, T % Tc, where the instanton calculus (6.9) should become reliable [285],

χ ∼ T 4 exp[−8π2/g2(T )]. (6.11)

Concerning the large-N behavior (investigated by performing simulations at various values of N ≥ 3
[196, 379]), the results indicate that χ has a nonvanishing large-N limit for T < Tc, as at T = 0, and that
the topological properties, and therefore the ground state energy F (θ), remain substantially unchanged in
the low-temperature phase, up to Tc. On the other hand, above the deconfinement phase transition, T > Tc,
χ shows a large suppression, hinting at a vanishing large-N limit for T > Tc.

Fig. 14 shows results for the scaling ratio

R(T ) ≡
χ(T )

χ(T = 0)
(6.12)

versus the reduced temperature t ≡ T/Tc − 1 for 4D SU(N) gauge theories with N = 4, 6 [196], and
Euclidean temporal size Lt = 6, 8 (we recall that the temperature is related to Lt by 1/T = aLt). One can
immediately observe that its behavior is drastically different in the low- and high-temperature phases. In
the low-temperature phase, all data for N = 4, Lt = 6, 8 and N = 6, Lt = 6 appear to lie on the same curve,
showing that scaling corrections are small and also that the large-N limit is quickly approached. The ratio
R remains constant and compatible with the value R = 1. As shown in Ref. [379], also the instanton size
distribution appears substantially unchanged for T ! Tc. Only close to Tc, i.e. for T > 0.97Tc, does this
ratio appear to decrease. These results show that in the confined phase the topological properties remain
substantially unchanged up to Tc. On the other hand, above the deconfinement phase transition, χ shows a
significant decrease. The comparison between the N = 4 and N = 6 data shows that the ratio R decreases
much faster for N = 6, hinting at a vanishing large-N limit of R for T > Tc. A comparison with the results
for N = 3 of Refs. [30, 271] suggests that the suppression of topological fluctuations is faster in SU(4) than
it is in SU(3).

Numerical results supporting the same picture have also been reported in Ref. [377]. The numerical evi-
dence of the topological suppression across the transition was inferred from simulations at Tc, by monitoring

39

= T/Tc − 1

R(T ) = χ(T )/χ(T = 0)
[Del Debbio, Panagopoulos, Vicari (2004)]

f(θ) ∼ T4 exp( −
8π2

g2(T) )(1 − cos θ) ∼ T4− 11N
3 Λ11N
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∝ χ(T ) = θ2/2(1 + b2θ2 + b4θ4 + ⋯)

⇒ b2 = − 1/12, ⋯
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consistent results. They show that the topological properties, and in particular the topological susceptibility
χ, vary very little up to T ! Tc. They change across the transition, where χ shows a significant decrease.
For example [271], χ decreases by approximately a factor 13 as the temperature is increased from 0.88Tc to
1.31Tc. Then, at high temperature, T % Tc, where the instanton calculus (6.9) should become reliable [285],

χ ∼ T 4 exp[−8π2/g2(T )]. (6.11)

Concerning the large-N behavior (investigated by performing simulations at various values of N ≥ 3
[196, 379]), the results indicate that χ has a nonvanishing large-N limit for T < Tc, as at T = 0, and that
the topological properties, and therefore the ground state energy F (θ), remain substantially unchanged in
the low-temperature phase, up to Tc. On the other hand, above the deconfinement phase transition, T > Tc,
χ shows a large suppression, hinting at a vanishing large-N limit for T > Tc.

Fig. 14 shows results for the scaling ratio

R(T ) ≡
χ(T )

χ(T = 0)
(6.12)

versus the reduced temperature t ≡ T/Tc − 1 for 4D SU(N) gauge theories with N = 4, 6 [196], and
Euclidean temporal size Lt = 6, 8 (we recall that the temperature is related to Lt by 1/T = aLt). One can
immediately observe that its behavior is drastically different in the low- and high-temperature phases. In
the low-temperature phase, all data for N = 4, Lt = 6, 8 and N = 6, Lt = 6 appear to lie on the same curve,
showing that scaling corrections are small and also that the large-N limit is quickly approached. The ratio
R remains constant and compatible with the value R = 1. As shown in Ref. [379], also the instanton size
distribution appears substantially unchanged for T ! Tc. Only close to Tc, i.e. for T > 0.97Tc, does this
ratio appear to decrease. These results show that in the confined phase the topological properties remain
substantially unchanged up to Tc. On the other hand, above the deconfinement phase transition, χ shows a
significant decrease. The comparison between the N = 4 and N = 6 data shows that the ratio R decreases
much faster for N = 6, hinting at a vanishing large-N limit of R for T > Tc. A comparison with the results
for N = 3 of Refs. [30, 271] suggests that the suppression of topological fluctuations is faster in SU(4) than
it is in SU(3).

Numerical results supporting the same picture have also been reported in Ref. [377]. The numerical evi-
dence of the topological suppression across the transition was inferred from simulations at Tc, by monitoring

39

= T/Tc − 1

R(T ) = χ(T )/χ(T = 0)
[Del Debbio, Panagopoulos, Vicari (2004)]related to the fact that the full-fledged dependence on θ of

the vacuum energy for any finite value of N must exhibit a
2π periodicity which disappears in the large-N limit, thus
implying a noncommutativity of the expansions and a
vanishing radius of convergence in the variable θ̄≡ θ=N.
We finally mention that the large-N behavior (26) of the

topological susceptibility has been confirmed by numerical
results of lattice CPN−1 models [23,72–75]. Instead,
numerical results for the θ-expansion coefficients b2n have
never been obtained yet.

IV. CONCLUSIONS

We study the large-N scaling behavior of the θ depend-
ence of 4D SUðNÞ gauge theories and 2D CPN−1 models,
where θ is the parameter associated with the Lagrangian
topological term. In particular, we focus on the first few
coefficients b2n of the expansion (3) of their ground-state
energy EðθÞ beyond the quadratic approximation, which
parametrize the deviations from a simple Gaussian distri-
bution of the topological charge at θ ¼ 0.
We present a numerical analysis of Monte Carlo simu-

lations of 4D SUðNÞ lattice gauge theories for N ¼ 3, 4, 6
in the presence of an imaginary θ term. This method, based
on the analytic continuation of the θ dependence from
imaginary to real θ values, allows us to significantly
improve earlier determinations of the first few coefficients
b2n. The results provide a robust evidence of the large-N
behavior predicted by standard large-N scaling arguments,
i.e. b2n ¼ OðN−2nÞ. In particular, we obtain b2 ¼ b̄2=N2 þ
Oð1=N4Þ with b̄2 ¼ −0.23ð3Þ. The results for the next
coefficient b4 of the θ expansion (3) show that it is very
small, in agreement with the large-N prediction that
b4 ¼ OðN−4Þ. Assuming the large-N scaling b4 ≈ b̄4=N4,
we obtain the bound jb̄4j≲ 0.1.
An important issue concerns the consistency between the

θ=N dependence in the large-N limit and the 2π periodicity
related to the topological phaselike nature of θ. Indeed, the
large-N scaling behavior is apparently incompatible with
the periodicity condition EðθÞ ¼ Eðθ þ 2πÞ, which is a
consequence of the quantization of the topological charge,
as indicated by semiclassical arguments based on its
geometrical meaning for continuous field configurations
[4]. Indeed a regular function of θ̄ ¼ θ=N cannot be
invariant for θ → θ þ 2π, unless it is constant. A plausible
way out [11] is that the ground-state energy EðθÞ tends to a
multibranched function in the large-N limit, such as

EðθÞ − Eð0Þ ¼ N2MinkH
!
θ þ 2πk

N

"
; ð28Þ

whereH is a generic function. EðθÞ is then periodic in θ but
not regular everywhere. As a consequence, the physical
relevance of the large-N scaling of the θ dependence should
be only restricted to the power-law expansion (3) around

θ ¼ 0 and of analogous expansions of other observables,
thus to the N dependence of their coefficients.
Our results significantly strengthen the evidence of the

large-N scaling scenario of the θ dependence, extending it
beyond the Oðθ2Þ expansion. We note that the large-N
scaling of the θ expansion is not guaranteed. Indeed there are
some notable cases in which this does not apply. For
example this occurs in the high-temperature regime of 4D
SUðNÞ gauge theories: for high temperatures the dilute
instanton-gas approximation (DIGA) is expected to provide
reliable results and one gets (see, e.g., [4]) the result b2 ¼
−1=12 for any N value. While the DIGA approximation is
a priori expected to be valid only at asymptotically high
temperatures, the switch from the large-N behavior to the
instanton gas behavior occurs at the deconfinement tran-
sition temperature Tc [76].
The analytic continuation method that we used to

compute the θ dependence can be also exploited in
finite-temperature simulation, where it is typically even
more efficient.1 As an example of its application in finite-
temperature runs, Fig. 11 presents an updating of the results
presented in [76] regarding the change of θ dependence
across the deconfinement transition. While the results for
T > Tc were precise enough also in the original publica-
tion, the region below deconfinement is much more
difficult (see the discussion in [43]). By combining the
result for SUð3Þ obtained in [43] and the present ones for
SUð6Þ, in the left side of Fig. 11 we can now display
the continuum extrapolated zero temperature value of b2
for SUð6Þ and much more precise results for the finite-
temperature values of b2. These results confirm the results
of [76] to an higher accuracy: in the low-temperature phase
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FIG. 11. Behavior of b2 across the deconfinement transition for
SUð3Þ and SUð6Þ [t is the reduced temperature defined by
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ature values. Updated version of the figure originally
presented in [76].

1Some caution is only needed for temperatures slightly above
deconfinement, since the introduction of an imaginary θ term
increases the critical temperature [45,46].
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Figure 14: The ratio R(T ) ≡ χ(T )/χ(T = 0) as a function of the reduced temperature t ≡ T/Tc − 1.
For each SU(N) gauge theory, these curves are expected to converge to a continuum curve when Lt → ∞,
where Lt is the length, in units of the lattice spacing, of the lattice along the Euclidean time direction. From
Ref. [196].

consistent results. They show that the topological properties, and in particular the topological susceptibility
χ, vary very little up to T ! Tc. They change across the transition, where χ shows a significant decrease.
For example [271], χ decreases by approximately a factor 13 as the temperature is increased from 0.88Tc to
1.31Tc. Then, at high temperature, T % Tc, where the instanton calculus (6.9) should become reliable [285],

χ ∼ T 4 exp[−8π2/g2(T )]. (6.11)

Concerning the large-N behavior (investigated by performing simulations at various values of N ≥ 3
[196, 379]), the results indicate that χ has a nonvanishing large-N limit for T < Tc, as at T = 0, and that
the topological properties, and therefore the ground state energy F (θ), remain substantially unchanged in
the low-temperature phase, up to Tc. On the other hand, above the deconfinement phase transition, T > Tc,
χ shows a large suppression, hinting at a vanishing large-N limit for T > Tc.

Fig. 14 shows results for the scaling ratio

R(T ) ≡
χ(T )

χ(T = 0)
(6.12)

versus the reduced temperature t ≡ T/Tc − 1 for 4D SU(N) gauge theories with N = 4, 6 [196], and
Euclidean temporal size Lt = 6, 8 (we recall that the temperature is related to Lt by 1/T = aLt). One can
immediately observe that its behavior is drastically different in the low- and high-temperature phases. In
the low-temperature phase, all data for N = 4, Lt = 6, 8 and N = 6, Lt = 6 appear to lie on the same curve,
showing that scaling corrections are small and also that the large-N limit is quickly approached. The ratio
R remains constant and compatible with the value R = 1. As shown in Ref. [379], also the instanton size
distribution appears substantially unchanged for T ! Tc. Only close to Tc, i.e. for T > 0.97Tc, does this
ratio appear to decrease. These results show that in the confined phase the topological properties remain
substantially unchanged up to Tc. On the other hand, above the deconfinement phase transition, χ shows a
significant decrease. The comparison between the N = 4 and N = 6 data shows that the ratio R decreases
much faster for N = 6, hinting at a vanishing large-N limit of R for T > Tc. A comparison with the results
for N = 3 of Refs. [30, 271] suggests that the suppression of topological fluctuations is faster in SU(4) than
it is in SU(3).

Numerical results supporting the same picture have also been reported in Ref. [377]. The numerical evi-
dence of the topological suppression across the transition was inferred from simulations at Tc, by monitoring

39

= T/Tc − 1

R(T ) = χ(T )/χ(T = 0)
[Del Debbio, Panagopoulos, Vicari (2004)]related to the fact that the full-fledged dependence on θ of

the vacuum energy for any finite value of N must exhibit a
2π periodicity which disappears in the large-N limit, thus
implying a noncommutativity of the expansions and a
vanishing radius of convergence in the variable θ̄≡ θ=N.
We finally mention that the large-N behavior (26) of the

topological susceptibility has been confirmed by numerical
results of lattice CPN−1 models [23,72–75]. Instead,
numerical results for the θ-expansion coefficients b2n have
never been obtained yet.

IV. CONCLUSIONS

We study the large-N scaling behavior of the θ depend-
ence of 4D SUðNÞ gauge theories and 2D CPN−1 models,
where θ is the parameter associated with the Lagrangian
topological term. In particular, we focus on the first few
coefficients b2n of the expansion (3) of their ground-state
energy EðθÞ beyond the quadratic approximation, which
parametrize the deviations from a simple Gaussian distri-
bution of the topological charge at θ ¼ 0.
We present a numerical analysis of Monte Carlo simu-

lations of 4D SUðNÞ lattice gauge theories for N ¼ 3, 4, 6
in the presence of an imaginary θ term. This method, based
on the analytic continuation of the θ dependence from
imaginary to real θ values, allows us to significantly
improve earlier determinations of the first few coefficients
b2n. The results provide a robust evidence of the large-N
behavior predicted by standard large-N scaling arguments,
i.e. b2n ¼ OðN−2nÞ. In particular, we obtain b2 ¼ b̄2=N2 þ
Oð1=N4Þ with b̄2 ¼ −0.23ð3Þ. The results for the next
coefficient b4 of the θ expansion (3) show that it is very
small, in agreement with the large-N prediction that
b4 ¼ OðN−4Þ. Assuming the large-N scaling b4 ≈ b̄4=N4,
we obtain the bound jb̄4j≲ 0.1.
An important issue concerns the consistency between the

θ=N dependence in the large-N limit and the 2π periodicity
related to the topological phaselike nature of θ. Indeed, the
large-N scaling behavior is apparently incompatible with
the periodicity condition EðθÞ ¼ Eðθ þ 2πÞ, which is a
consequence of the quantization of the topological charge,
as indicated by semiclassical arguments based on its
geometrical meaning for continuous field configurations
[4]. Indeed a regular function of θ̄ ¼ θ=N cannot be
invariant for θ → θ þ 2π, unless it is constant. A plausible
way out [11] is that the ground-state energy EðθÞ tends to a
multibranched function in the large-N limit, such as

EðθÞ − Eð0Þ ¼ N2MinkH
!
θ þ 2πk

N

"
; ð28Þ

whereH is a generic function. EðθÞ is then periodic in θ but
not regular everywhere. As a consequence, the physical
relevance of the large-N scaling of the θ dependence should
be only restricted to the power-law expansion (3) around

θ ¼ 0 and of analogous expansions of other observables,
thus to the N dependence of their coefficients.
Our results significantly strengthen the evidence of the

large-N scaling scenario of the θ dependence, extending it
beyond the Oðθ2Þ expansion. We note that the large-N
scaling of the θ expansion is not guaranteed. Indeed there are
some notable cases in which this does not apply. For
example this occurs in the high-temperature regime of 4D
SUðNÞ gauge theories: for high temperatures the dilute
instanton-gas approximation (DIGA) is expected to provide
reliable results and one gets (see, e.g., [4]) the result b2 ¼
−1=12 for any N value. While the DIGA approximation is
a priori expected to be valid only at asymptotically high
temperatures, the switch from the large-N behavior to the
instanton gas behavior occurs at the deconfinement tran-
sition temperature Tc [76].
The analytic continuation method that we used to

compute the θ dependence can be also exploited in
finite-temperature simulation, where it is typically even
more efficient.1 As an example of its application in finite-
temperature runs, Fig. 11 presents an updating of the results
presented in [76] regarding the change of θ dependence
across the deconfinement transition. While the results for
T > Tc were precise enough also in the original publica-
tion, the region below deconfinement is much more
difficult (see the discussion in [43]). By combining the
result for SUð3Þ obtained in [43] and the present ones for
SUð6Þ, in the left side of Fig. 11 we can now display
the continuum extrapolated zero temperature value of b2
for SUð6Þ and much more precise results for the finite-
temperature values of b2. These results confirm the results
of [76] to an higher accuracy: in the low-temperature phase
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presented in [76].

1Some caution is only needed for temperatures slightly above
deconfinement, since the introduction of an imaginary θ term
increases the critical temperature [45,46].
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