Peeking into the $\boldsymbol{\theta}$ vacuum of 4d SU(2) Yang-Mills theory

Norikazu Yamada (KEK/SOKENDAI) in collaboration with
Ryuichiro Kitano (KEK/SOKENDAI)
Ryutaro Matsudo (KEK)
Masahito Yamazaki (Kavli IPMU)

Based on 2102.08784 [hep-lat]
[Ref. JHEP02, 073 (2021)]

Goal

Clarify the θ dependence of free energy density $f(\theta)$ of 4 d YM

$$
\begin{aligned}
& e^{-V f(\theta)}=\frac{Z(\theta)}{Z(0)} \\
& \text { where } \quad Z(\theta)=\int \mathscr{D} U e^{-S_{\mathrm{YM}}+i \theta Q}, Q=\int d^{4} x q(x) \text { and } q(x)=\frac{1}{64 \pi^{2}} \epsilon_{\mu \nu \rho \sigma} F_{\mu \nu}^{a} F_{\rho \sigma}^{a}
\end{aligned}
$$

For $S U(N)$ YM theory,
$\left.\begin{array}{l}Q \in \mathbb{Z} \Rightarrow Z(\theta)=Z(\theta+2 \pi) \Rightarrow f(\theta)=f(\theta+2 \pi) \\ S_{\mathrm{YM}} \text { is } \mathrm{CP} \text { even } \Rightarrow Z(\theta)=Z(-\theta) \Rightarrow f(\theta)=f(-\theta)\end{array}\right\} f\left(\pi-\theta^{\prime}\right)=f\left(\pi+\theta^{\prime}\right)$

θ dependence and $\mathbf{C P}$ violation

Dilute instanton gas approximation (DIGA)
$\Rightarrow f(\theta)=\chi(1-\cos \theta)$

- a single branch
- smooth everywhere

θ dependence and $\mathbf{C P}$ violation

Dilute instanton gas approximation (DIGA)
$\Rightarrow f(\theta)=\chi(1-\cos \theta)$

- a single branch
- smooth everywhere

Large N argument [Witten $(1980,1998)$]

$$
\Rightarrow f(\theta)=\chi / 2 \min _{k \in \mathbb{Z}}(\theta+2 \pi k)^{2}+O\left(1 / N^{2}\right)
$$

- consists of many branches with crossing
- spontaneous CPV (ist order PT) at $\theta=\pi$ with the order parameter $d f(\theta) / d \theta=-i\langle q(x)\rangle$

θ dependence and $\mathbf{C P}$ violation

Dilute instanton gas approximation (DIGA)

$$
\Rightarrow f(\theta)=\chi(1-\cos \theta)
$$

- a single branch
- smooth everywhere

Large N argument [Witten (1980, 1998)]

$$
\Rightarrow f(\theta)=\chi / 2 \min _{k \in \mathbb{Z}}(\theta+2 \pi k)^{2}+O\left(1 / N^{2}\right)
$$

- consists of many branches with crossing
- spontaneous CPV (ist order PT) at $\theta=\pi$ with the order parameter $d f(\theta) / d \theta=-i\langle q(x)\rangle$

Summary of previous results on $f(\theta)$

- Large N argument seems robust $\Rightarrow \mathrm{CPV}$ at $\theta=\pi$ for large N
- Formal arguments tell that, for general N, CP has to be broken at $\theta=\pi$ if the vacuum is in the confining phase. [Gaiotto, et al.(2017)], [Kitano, Suyama, NY(2017)]
- Some numerical evidences of $C P V$ for $N \geq 3$
- What happens to the possible smallest N, i.e. $S U(2)$ YM ?
 Is it like "large N " or " $2 \mathrm{~d} C P^{1 "}$ "?
\Rightarrow Lattice numerical simulations (difficult due to sign problem)

New method without any expansion

Generate configurations with $\theta=0$
Define sub-volume $V_{\text {sub }}=l^{4}$ and $Q_{\text {sub }}=\sum_{x \in V_{\text {sub }}} q(x) \notin \mathbb{Z}$
$e^{-V_{\text {sub }} f_{\text {sub }}(\theta)}=\frac{Z_{\text {sub }}(\theta)}{Z(0)}=\frac{1}{Z(0)} \int \mathscr{D} U e^{-S_{g}+i \theta Q_{\text {sut }}}=\left\langle e^{i \theta Q_{\text {sub }}}\right\rangle$
$f_{\text {sub }}(\theta)=-\frac{1}{V_{\text {sub }}} \ln \left\langle\cos \left(\theta Q_{\text {sub }}\right)\right\rangle$
$f(\theta)=\lim _{V_{\text {sub }} \rightarrow \infty} f_{\text {sub }}(\theta)=\lim _{l \rightarrow \infty}\left\{f(\theta)+\frac{s(\theta)}{l}+O\left(1 / l^{2}\right)\right\}$
with $l_{\text {dyn }}^{4} \ll V_{\text {sub }} \ll V_{\text {full }} \quad\left(l_{\text {dyn }}\right.$: dynamical length scale)
$s(\theta)$: surface tension

"sub-volume method"

cf) $2 \mathrm{~d} C P^{1}$ by [Keith-Hynes and Thacker (2008)]

Lattice parameters and observables

- $S U(2)$ YM theory by Symanzik improved gauge action
. $\beta=\frac{4}{g^{2}}=1.975$ (relatively fine: $1 /\left(a T_{c}\right)=9.50$)
$\cdot V_{\text {full }}=24^{3} \times\{48,6,8\}\left(T=0,1.2 T_{c}, 1.6 T_{c}\right)$
- Periodic boundary condition in all directions
- \# of configs = \{68000, 10000, 10000 $\}$
- Calculate $Q_{\text {sub }}=\sum_{x \in V_{\text {sub }}} q(x)$ and estimate

$$
\begin{aligned}
& \checkmark f(\theta)=-\lim _{V_{\text {sub }} \rightarrow \infty} \frac{1}{V_{\text {sub }}} \ln \left\langle\cos \left(\theta Q_{\text {sub }}\right)\right\rangle \\
& \checkmark \frac{d f(\theta)}{d \theta}=\lim _{V_{\text {sub }} \rightarrow \infty} \frac{1}{V_{\text {sub }}} \frac{\left\langle Q_{\text {sub }} \sin \left(\theta Q_{\text {sub }}\right)\right\rangle}{\left\langle\cos \left(\theta Q_{\text {sub }}\right)\right\rangle}
\end{aligned}
$$

which are used to crosscheck each other

$l \rightarrow \infty$ limit at $T=0$

- $V_{\text {sub }}=l^{4}$ with $l \in\{10,12, \cdots, 24\}$
- Data in the range of $l_{\text {dyn }}^{4} \ll V_{\text {sub }} \ll V_{\text {full }}$ are fitted to

$$
f_{\mathrm{sub}}(\theta)=f(\theta)+\frac{a s(\theta)}{l}
$$

- Linear extrapolation works well.

θ dependence of $f(\theta)$ at $T=0$

- Succeed to calculate up to $\theta \sim 3 \pi / 2$
- Monotonically increasing function
- Inconsistent with DIGA
- $f(\pi-\theta) \neq f(\pi+\theta)$ requires explanation.
- Re-weighting (=full volume) method works only around $\theta=0$.
- Numerical consistency with $\int d \theta \frac{d f}{d \theta}$

$d f(\theta) / d \theta \mathbf{a t} T=0$

- Order parameter is non-zero

$$
d f(\theta) /\left.d \theta\right|_{\theta=\pi}=-i\langle q(x)\rangle_{\theta=\pi} \neq 0
$$

\Rightarrow spontaneous CPV at $\theta=\pi$

θ dependence of $f(\theta)$ at $T=1.2 T_{c}$

- Systematic error due to ambiguity of the scaling region is large for $\theta>\pi$
- Within large uncertainty, consistent with the DIGA.
- $d f(\theta) /\left.d \theta\right|_{\theta=\pi} \approx 0 \Rightarrow$ no $C P V$ above T_{c}
- Numerical consistency with $\int d \theta \frac{d f}{d \theta}$
- Similar results at $T=1.6 T_{c}$

Discussion

- For $T>T_{c}$, consistent with $f(\theta)=\chi(1-\cos \theta)$
- At $T=0, f(\pi-\theta) \neq f(\pi+\theta)$ is not satisfied and it is not like

Why?

Interpretation

- Sub-volume method seems to trace an original branch even after the crossing point is passed.

Interpretation

- Sub-volume method seems to trace an original branch even after the crossing point is passed.

- Similar to the calculation of the static potential, where"string breaking" should happen but never occurs.

Interpretation

- Sub-volume method seems to trace an original branch even after the crossing point is passed.

- Similar to the calculation of the static potential, where"string breaking" should happen but never occurs.

Interpretation

- Sub-volume method seems to trace an original branch even after the crossing point is passed.

- Similar to the calculation of the static potential, where"string breaking" should happen but never occurs.
- In the present case, the domain to domain-wall transition should occur but does not in this

Chernodub (2010) method.

Interpretation

- Sub-volume method seems to trace an original branch even after the crossing point is passed.

- Similar to the calculation of the static potential, where"string breaking" should happen but never occurs.
- In the present case, the domain to domain-wall transition should occur but does not in this method.

Chernodub (2010)
$4 \mathrm{~d} \mathrm{SU}(\mathrm{N})$ YM has an topological object called a bag or a domain-wall
[Luscher (1978)].

Interpretation

- Sub-volume method seems to trace an original branch even after the crossing point is passed.

- Similar to the calculation of the static potential, where"string breaking" should happen but never occurs.
- In the present case, the domain to domain-wall transition should occur but does not in this

Chernodub (2010) method.

4d SU(N) YM has an topological object called a bag or a domain-wall [Luscher (1978)].

Summary and conclusion

- We have developed a sub-volume method, which enables us to calculate $f(\theta)$ up to $\theta \sim 3 \pi / 2$ at $T=0$ in SU(2) Yang-Mills theory.
- Combining with the theory requirement $f(\pi-\theta)=f(\pi+\theta)$, our result provides with the evidence for spontaneous $C P V$ at $T=0$. $\Rightarrow 4 \mathrm{~d} \boldsymbol{S U}(\mathbf{2})$ YM belongs to large N class (not like $C P^{1}$ model).
- The same method yields the result consistent with the DIGA, $f(\theta) \sim \chi(1-\cos \theta)$, above T_{c} within large systematic uncertainty.
- Application to QCD is straightforward.

Future studies

- exploring the location of $T_{c}(\theta)$
- applying the sub-volume method to the finite density system.
$S U(N)$ with $N=2, \cdots \infty$

Backup slides

Intuitive understanding of periodic behavior of $f(\theta)$

$$
f(\theta)=-\lim _{V_{\mathrm{sub}} \rightarrow \infty} \frac{1}{V_{\mathrm{sub}}} \ln \left\langle e^{-i \theta Q_{\mathrm{sub}}}\right\rangle=-\lim _{V_{\mathrm{sub}} \rightarrow \infty} \frac{1}{V_{\mathrm{sub}}} \ln \left\langle\cos \left(\theta Q_{\mathrm{sub}}\right)\right\rangle
$$

$Q_{\text {sub }}=+1$

$Q_{\text {sub }}=0$

$Q_{\text {sub }}=+1$
: instanton
: anti-instanton

In this case, $Q_{\text {sub }}$ is almost always integer if $\rho_{\text {instanton }}^{4} \ll V_{\text {sub }}$.
$\left.\Rightarrow f(\theta)\right|_{\theta \approx 2 \pi} \sim 0 \Rightarrow 2 \pi$-periodicity is expected.

θ-vacuum

- The vacuum can have an integer winding number, labeled by $|n\rangle$.
- But, this label is changed by gauge transformation, e.g. $U_{(1)}|n\rangle \rightarrow|n+1\rangle$.
- Define $|\theta\rangle=\sum_{n-\infty}^{+\infty} e^{i n \theta}|n\rangle \Longleftrightarrow U_{(1)}|\theta\rangle=e^{-i \theta}|\theta\rangle$
- $\left\langle\theta_{+} \mid \theta_{-}\right\rangle_{J}=\sum_{m, n} e^{i n \theta} e^{-i m \theta}\left\langle m_{+} \mid n_{-}\right\rangle_{J}=\sum_{Q} e^{i \theta Q} \sum_{m}\left\langle m_{+} \mid m_{-}+Q\right\rangle_{J}$
$=\sum_{Q} \int_{\in Q} \mathscr{D} A e^{-S_{g}+i \theta Q+\int J \cdot A} \delta\left(Q-\frac{g^{2}}{32 \pi^{2}} \int d^{4} x G \tilde{G}\right)$
$=\int \mathscr{D} A e^{-S_{g}+i \theta Q+\int J \cdot A}$

Expected behavior of $f_{\text {sub }}(\theta)$ as a function of $V_{\text {sub }}$

. It must be $V_{\text {sub }} \gg l_{\text {dyn }}^{4}$.
-As long as $V_{\text {sub }} \gg l_{\text {dyn }}^{4}, f_{\text {sub }}(\theta)$ is expected to show the scaling behavior, $f_{\text {sub }}(\theta)=f(\theta)+\frac{s(\theta)}{l}+O\left(1 / l^{2}\right)$.

- Buch a behavior will end as $V_{\text {sub }} \rightarrow V_{\text {full }}$, where $Q_{\text {sub }} \rightarrow Q_{\text {full }} \in \mathbb{Z}$. Thus, $V_{\text {sub }} \ll V_{\text {full }}$ is required.
- On the other hand, the method fails when $\left|\theta Q_{\text {sub }}\right| \sim \pi$ because $f_{\text {sub }}(\theta) \propto \ln \left\langle\cos \left(\theta Q_{\text {sub }}\right)\right\rangle$ becomes ill-defined.
- Crucial question:

$$
V_{\text {sub }} \text { satisfying } l_{\text {dyn }}^{4} \ll V_{\text {sub }} \ll V_{\text {full }} \text { and }\left|\theta Q_{\text {sub }}\right|<\pi \text { exists? }
$$

Similarity to the static potential calculation

In the static potential calculation, Wilson loop is inserted.

$$
\frac{Z(\square)}{Z(1)}=\frac{1}{Z(1)} \int \mathscr{D U} \operatorname{Tr}\left[e^{i \notin A}\right] e^{-S_{\mathrm{CCD}}}=\left\langle\operatorname{Tr}\left[e^{i \notin A}\right]\right\rangle \rightarrow e^{-V(\mathscr{A})}
$$

$$
V(\mathscr{A})=-\lim _{\mathscr{A} \rightarrow \infty} \ln \left\langle\operatorname{Tr}\left[e^{i \notin A}\right]\right\rangle=\sigma \mathscr{A}+\cdots
$$

In sulb-volume method, instead a operator extending over
 subvolume is inserted.
$f(\theta)$ is analogous to σ in the static potential.

About smearing

- Need to numerically calculate $q(x)=\frac{1}{64 \pi^{2}} \epsilon_{\mu \nu \rho \sigma} F_{\mu \nu}^{a} F_{\rho \sigma}^{a}$ on the lattice
- Raw configurations are contaminated by local lumps.
- Smearing (= smoothing a configuration) removes such short-distance artifacts.
- However, at the same time, smearing may alter relevant topological excitations, too.
- We studied this point and developed the procedure to restore relevant information. [Kitano, NY, Yamazaki (2021)]
- calculate an observable every 5 steps of the smearing
- extrapolate those back to $n_{\text {APE }} \rightarrow 0,\langle O\rangle=\lim _{n_{\text {APE }} \rightarrow 0}\left\langle O\left(n_{\text {APE }}\right)\right\rangle$

$n_{\text {APE }} \rightarrow 0 \operatorname{limit}$ at $T=0$

- Fit range $n_{\text {APE }}=[20,40]$ determined in [Kitano, NY, Yamazaki (2021)].
- Linear fit works well.
- Monotonic function $f(\pi)<f(3 \pi / 2)$

Learning from $2 \mathrm{~d} C P^{N-1}$ model

$$
\mathscr{L}=\frac{N}{2 g} \overline{D_{\mu} z} D_{\mu} z-i \theta q
$$

$z: \mathrm{N}$-component complex scalar field with $\bar{z} z=1$

$$
\begin{aligned}
& D_{\mu}=\partial_{\mu}+i A_{\mu}, \quad A_{\mu}=i \bar{z} \partial_{\mu} z \\
& q(x)=\frac{1}{2 \pi} \epsilon_{\mu \nu} \partial_{\mu} A_{\nu}=\frac{i}{2 \pi} \epsilon_{\mu \nu} \overline{D_{\mu} z} D_{\mu} z
\end{aligned}
$$

- Good testing ground for $4 \mathrm{~d} S U(N)$ because of many similarities
[asymptotic freedom, dynamical mass gap, instanton, $1 / N$ expandable, ...]
- Gapped and CP broken at $\theta=\pi$ for $N \geq 3$.
- But $C P^{1}$ (i.e. $N=2$) is exceptional!
\Rightarrow gapless and no CPV at $\theta=\pi \quad(\Leftrightarrow$ Haldane conjecture)

$f(\theta)$ in 2d $C P^{N-1}$ model (lattice results)

$$
\begin{aligned}
& e^{-V_{\text {sub }} f_{\text {sub }}(\theta)}=\frac{1}{Z[0]} \int \mathscr{D} z \mathscr{D} \bar{z} e^{-S_{C P(N-1)}-i \theta Q_{\text {sub }}} \\
& =\left\langle e^{\left.-i \theta Q_{\text {sub }}\right\rangle}\right. \\
& Q_{\text {sub }}=\int_{x \in V_{\text {sub }}} d^{2} x \frac{1}{2 \pi} \epsilon_{\mu \nu} \partial_{\mu} A_{\nu} \rightarrow Q_{\text {sub }}^{\text {lat }}= \\
& \frac{-i}{2 \pi} \sum_{x \in V_{\text {sub }}} \ln P_{x} \\
& \\
& \quad\left(P_{x}: \text { plaquette }\right)
\end{aligned}
$$

$C P^{1}$ is indeed consistent with the DIGA,

$$
f(\theta)=\chi(1-\cos \theta)
$$

while others indicate CPV.

Previous Lattice calculations of $4 \mathbf{d} S U(N)$

$$
\begin{aligned}
\mathscr{L}_{\theta} & =\frac{1}{4} F_{\mu \nu}^{a} F_{\mu \nu}^{a}-\underline{i} \theta q \\
q(x) & =\frac{g^{2}}{64 \pi^{2}} \epsilon_{\mu \nu \rho \sigma} F_{\mu \nu}^{a} F_{\rho \sigma}^{a}
\end{aligned}
$$

- Sign problem makes direct lattice calculation difficult/impossible.

Previous Lattice calculations of $4 \mathbf{d} S U(N)$

$$
\begin{aligned}
\mathscr{L}_{\theta} & =\frac{1}{4} F_{\mu \nu}^{a} F_{\mu \nu}^{a}-\underline{i} \theta q \\
q(x) & =\frac{g^{2}}{64 \pi^{2}} \epsilon_{\mu \nu \rho \sigma} F_{\mu \nu}^{a} F_{\rho \sigma}^{a}
\end{aligned}
$$

- Sign problem makes direct lattice calculation difficult/impossible.
- Relies on Taylor expansion around $\theta=0$

$$
f(\theta)=\frac{\chi}{2} \theta^{2}\left(1+b_{2} \theta^{2}+b_{4} \theta^{4}+\cdots\right)
$$

and determines each coefficient on the lattice by

$$
\begin{aligned}
& \chi=\frac{\left\langle Q^{2}\right\rangle_{\theta=0}}{V} \\
& b_{2}=-\frac{\left\langle Q^{4}\right\rangle_{\theta=0}-3\left\langle Q^{2}\right\rangle_{\theta=0}^{2}}{12\left\langle Q^{2}\right\rangle_{\theta=0}} \\
& b_{4}=\frac{\left\langle Q^{6}\right\rangle_{\theta=0}-15\left\langle Q^{2}\right\rangle_{\theta=0}\left\langle Q^{4}\right\rangle_{\theta=0}+30\left\langle Q^{2}\right\rangle_{\theta=0}^{3}}{360\left\langle Q^{2}\right\rangle_{\theta=0}}
\end{aligned}
$$

$$
\vdots
$$

First two coefficients

$$
\chi / \sigma^{2}=C_{\infty}+\frac{c_{2}}{N^{2}}+O\left(1 / N^{4}\right)
$$

First two coefficients

$$
\chi / \sigma^{2}=C_{\infty}+\frac{c_{2}}{N^{2}}+O\left(1 / N^{4}\right)
$$

$$
b_{2}=\frac{\bar{b}_{2}}{N^{2}}+O\left(1 / N^{4}\right)
$$

First two coefficients

$$
\chi / \sigma^{2}=C_{\infty}+\frac{c_{2}}{N^{2}}+O\left(1 / N^{4}\right)
$$

$$
b_{2}=\frac{\bar{b}_{2}}{N^{2}}+O\left(1 / N^{4}\right)
$$

only small corrections to the large N limit indicates $C P V$ for $N \geq 3$.
(No $S U(2)$ calculation)

Finite temperature

$$
\begin{aligned}
\text { DIGA }: f(\theta) \sim T^{4} \exp \left(-\frac{8 \pi^{2}}{g^{2}(T)}\right)(1-\cos \theta) \sim \frac{T^{4-\frac{11 N}{3}} \Lambda^{\frac{11 N}{3}}}{\propto \chi(T)}\left(\frac{1-\cos \theta)}{}\right. & =\theta^{2} / 2\left(1+b_{2} \theta^{2}+b_{4} \theta^{4}+\cdots\right) \\
& \Rightarrow b_{2}=-1 / 12, \quad \cdots
\end{aligned}
$$

Finite temperature

$$
\text { DIGA }: f(\theta) \sim T^{4} \exp \left(-\frac{8 \pi^{2}}{g^{2}(T)}\right)(1-\cos \theta) \sim \frac{T^{4-\frac{11 N}{3}} \Lambda^{\frac{11 N}{3}}(1-\cos \theta)}{\alpha \chi(T)} \frac{\theta^{2} / 2\left(1+b_{2} \theta^{2}+b_{4} \theta^{4}+\cdots\right)}{}
$$

Finite temperature

$$
\text { DIGA }: f(\theta) \sim T^{4} \exp \left(-\frac{8 \pi^{2}}{g^{2}(T)}\right)(1-\cos \theta) \sim \frac{T^{4-\frac{11 N}{3}} \Lambda^{\frac{11 N}{3}}(1-\cos \theta)}{\propto \chi(T)} \frac{\theta^{2} / 2\left(1+b_{2} \theta^{2}+b_{4} \theta^{4}+\cdots\right)}{}
$$

Finite temperature

DIGA : $f(\theta) \sim T^{4} \exp \left(-\frac{8 \pi^{2}}{g^{2}(T)}\right)(1-\cos \theta) \sim \frac{T^{4-\frac{11 N}{3} \Lambda^{\frac{11 N}{3}}}}{\alpha \chi(T)} \frac{1-\cos \theta)}{=\theta^{2} / 2\left(1+b_{2} \theta^{2}+b_{4} \theta^{4}+\cdots\right)}$

DIGA works for $T>1.15 T_{26} \quad$ (No $S U(2)$ calculation)

χ and b_{2} in $S U(2)$ at $T=0$

- smoothly connected to large N limit
$\Rightarrow N \in \mathbb{Z}$ can be analytically continued to \mathbb{R}
$\Rightarrow f(\theta)$ would be smooth function of N
- $b_{2} \neq-\frac{1}{12}$ (i.e. not instanton-like)
\Rightarrow conjectured that $\mathrm{SU}(2)$ belongs to large N class and $C P V$ takes places at $\theta=\pi$.

χ and b_{2} in $S U(2)$ at $T=0$

- smoothly connected to large N limit
$\Rightarrow N \in \mathbb{Z}$ can be analytically continued to \mathbb{R}
$\Rightarrow f(\theta)$ would be smooth function of N
- $b_{2} \neq-\frac{1}{12}$ (i.e. not instanton-like)
\Rightarrow conjectured that $\mathrm{SU}(2)$ belongs to large N class and $C P V$ takes places at $\theta=\pi$.

