The search for low-mass axion dark matter with ABRACADABRA-10 cm

Chiara P. Salemi,^{1,*} Joshua W. Foster,^{2,3,4,†} Jonathan L. Ouellet,^{1,‡} Andrew Gavin,⁵ Kaliroë M. W. Pappas,¹ Sabrina Cheng,¹ Kate A. Richardson,⁵ Reyco Henning,^{5,6} Yonatan Kahn,^{7,8} Rachel Nguyen,^{7,8} Nicholas L. Rodd,^{3,4} Benjamin R. Safdi,^{2,3,4} and Lindley Winslow^{1,§}

 ¹Laboratory of Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA 02139
 ²Leinweber Center for Theoretical Physics, Department of Physics, University of Michigan, Ann Arbor, MI 48109

 ³Berkeley Center for Theoretical Physics, University of California, Berkeley, CA 94720
 ⁴Theoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
 ⁵Department of Physics and Astronomy, University of North Carolina, Chapel Hill, Chapel Hill, NC, 27599
 ⁶Triangle Universities Nuclear Laboratory, Durham, NC 27710
 ⁷Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801
 ⁸Illinois Center for Advanced Studies of the Universe, University of Illinois at Urbana-Champaign, Urbana, IL 61801
 (Dated: February 16, 2021)

ABRACADABRA

Kaliroë Pappas

MIT

Cambridge High Energy Workshop 2021 -Axion Physics

Outline

- Low-mass/Long-wavelength axions
- How to detect them
- Experimental setup and results for ABRACADABRA

Axion Mass and Frequency

How do we detect axions?

Axion interactions with photons

 $\frac{1}{f_a} a - \frac{\chi}{\chi} \chi$

Ampere's Law $\nabla \times B = \frac{\partial E}{\partial t} - g_{a\gamma\gamma} \left(E \times \nabla a - \frac{\partial a}{\partial t} B \right)$

Ampere's Law $\nabla \times B = \frac{\partial E}{\partial t} - g_{a\gamma\gamma} \left(E \times \nabla a - \frac{\partial a}{\partial t} B \right)$

Ampere's Law $\nabla \times B = \frac{\partial E}{\partial t} + g_{a\gamma\gamma} \left(\frac{\partial a}{\partial t} B \right)$

$$a(t) = \frac{\sqrt{2\rho_{DM}}}{m_a} \sin(m_a t)$$

$$\rho_a = \rho_{DM}$$

m

 $\frac{1}{f_a}a$

Magnetoquasistatic Approximation

In the long wavelength regime, we can think of the axion interaction with photons as a current

Ampere's Law

$$\nabla \times B = \frac{\partial E}{\partial t} + g_{a\gamma\gamma} \left(\frac{\partial a}{\partial t}B\right)^{f_a}$$

$$a(t) = \frac{\sqrt{2\rho_{DM}}}{m_a} \sin(m_a t)$$

B-Field

Axions parameter space

Low-mass axions

"Classical" axions

Cavity axion searches

Cavity axion searches

Low-mass/long-wavelength

Low-mass/long-wavelength

Lumped-element search

Lumped element searches

Lumped element searches

Broadband

Resonant

Kahn, Safdi, Thaler <u>10.1103/PhysRevLett.117.141</u> <u>801</u>

<u>ABRACADABRA</u>⊳

A Broadband/Resonance Approach to Cosmic Axion Detection with an Amplifying B-field Ring Apparatus

<u>ABRACADABRA</u>⊳

A Broadband/Resonance Approach to Cosmic Axion Detection with an Amplifying B-field Ring Apparatus

Toroidal magnet

1 T B-field

Axion comes in

Converts to a current

1 T B-field

Induces a magnetic field

We measure it!

Pickup structure

Pickup structure

$$SNR = g_{a\gamma\gamma} \sqrt{\rho_{DM}} \mathcal{G}VB_{max} \left(\frac{M_{in}}{L_T}\right) \frac{(\tau t)^{1/4}}{S_{\Phi\Phi}^{1/2}}$$

$$SNR = g_{a\gamma\gamma} \sqrt{\rho_{DN}} G B_{max} \left(\frac{M_{in}}{L_T}\right) \frac{(\tau t)^{1/4}}{S_{\Phi\Phi}^{1/2}}$$

Geometric factor

 $SNR = g_{a\gamma\gamma} \sqrt{\rho_{DM}} \mathcal{G}VB_{max} \left(\frac{M_{in}}{L_T}\right) \frac{(\tau t)^{1/4}}{\mathcal{J}_{\Phi\Phi}^{1/2}}$ Axion coherence time and the integration time

$$SNR = g_{a\gamma\gamma} \sqrt{\rho_{DM}} GVB_{max} \left(\frac{M_{in}}{L_T}\right) \frac{(\tau t)^{1/4}}{S_{\Phi\Phi}}$$

Flux noise level/
noise on our SQUIDs

ABRACADABRA pickup update

Run 1

ABRACADABRA pickup update

ABRACADABRA pickup update

arXiv:2102.06722

Axion Signal

Simulated Data

Standard Halo Model

Calibration and data taking

We inject a fake axion signal to calibrate our system

1 T B-field

Calibration loop

Calibration and data taking

We take data in the magnet off and on configurations to veto false signals

1 T B-field

Data taking and processing

- We limit our search range to 75 kHz – 2 MHZ (m_a in 0.31 – 8.1 neV). With 11.1 million mass points
- For each mass point, a likelihood function is calculated
- Axion discovery search is based on a log-likelihood ratio test, between the best fit and the null hypothesis
- We set the 5σ discovery threshold as TS > 56.1 (accounting for the Look Elsewhere Effect)

ABRACADABRA 2021 Result

- We saw no 5σ excesses that were not vetoed by magnet-off or digitizer data
- We place 95% C.L. upper limit using a similar log-likelihood ratio approach

Backgrounds

Two categories of backgrounds:

Backgrounds

Two categories of backgrounds:

- 1. Electromagnetic
 - Most annoying at higher frequencies (1 kHz 5 MHz)

Backgrounds

Two categories of backgrounds:

- 1. Electromagnetic
 - Most annoying at higher frequencies (1 kHz 5 MHz)
- 2. Vibrations
 - Most annoying at low Frequencies (1 Hz – 100 Hz)

- 1. Electromagnetic
 - Most annoying at higher frequencies (1 kHz 5 MHz)

1. Electromagnetic

 Most annoying at higher frequencies (1 kHz – 5 MHz)

Power spectra over frequency

- 2. Vibrations
 - Most annoying at low frequencies (1 Hz 100 Hz)

- 2. Vibrations
 - Most annoying at low frequencies (1 Hz 100 Hz)

Geometric anti-spring filter

- 2. Vibrations
 - Most annoying at low frequencies (1 Hz 100 Hz)

Geometric anti-spring filter

DMRadio

Summary

- Long-wavelength/Low-mass/GUT-scale axions can be found using lumped element searches
- With ABRA we were able to probe the 0.31 8.1 neV mass range and place world-leading limits
- DMRadio will expand the lumped element search for axions down to the QCD axion band

ABRACADABRA Collaboration

Sabrina Cheng Joshua Foster Andrew Gavin Reyco Henning Yonatan Kahn Rachel Nguyen Jonathan Ouellet Kaliroë Pappas Kate Richardson Nicholas Rodd Benjamin Safdi Chiara Salemi Lindley Winslow

