Batch Computing on SubMIT:

minimizing the horrors of batch
computing to make your research go fast
and make your collaborators happy

Lucalavezzo
SubMIT User’s Meeting
April 21st, 2025

You, most likely

Your problem:
Running things on your laptop is slow.

(Your collaborators are waiting for results, and
you can’t go our for a beer with friends until
you finish your project.)

B Bl Massachusetts
I I Institute of
Technology

You, most likely

Your problem:
Running things on your laptop is slow.

(Your collaborators are waiting for results, and
you can’t go our for a beer with friends until
you finish your project.)

B Bl Massachusetts
I I Institute of
Technology

Hereis the promi_se

k
k
k
k
k
k
k
k
k
k
k
k

10

Sun 18:88 Fon 668:86

W T2_Us_MIT
B Idle

O T3_US_MIT

Thatis alot of jobs!

Fon 86:80

O EAPS

Ll 4

O osG

Mon 12:88

B cMs
B Held

Sun 18:88
B submit
O submit-gpu-a3e@
B COMPLETING

Mon 80:08 Hon B6:80
B submit-1ghbs
O lged B PENDING
B SUSPENDED

Hon 12:688

E submit-gpu
O RUNNING
W STOPPED

The horror of reality

ARE YA WINNING,
advisee?

1 Unpredictable
' Remote hardware
file reads allocation
Shipping Re-writing
environments framework to
process data
Parsing in parallel
through
thousands Job resubmissions

oflogfiles ;o monitoring

Our solution

To aid you in transitioning to batch computing, we have built anin-house,
sophisticated, and effective neural-network-based system that you can chat with

Our solution

To aid you in transitioning to batch computing, we have built an in-house,
sophisticated, and effective neural-network-based system that you can chat with

Training procedure:

Input data Neural Network Output weights
Too many hourson
N~ Infinite wisdom about
HIConddr batch jobs, computing,
and life

Runs on most machines, best performance achieved with lightly roasted = \
beans filtered with a pour-over .

Let’s get serious: Slurm

Slurmis a way to submit jobs directly to the SubMIT compute nodes
Easiest solution if you need something done quickly!

OK:how do werun a job?

Easy! We just need to:

1. Give someinstructionsto
request resources from Slurm

2. Write abash script that executes
our workflow as arecipe

Let’s get serious: Slurm

Slurmis a way to submit jobs directly to the SubMIT compute nodes
Easiest solution if you need something done quickly!

submit.sh

OK: how do werun ajob? #!/bin/bash
#

#SBATCH --job-name=job

Easy! We just need to: ,
#SBATCH --output=res %j.txt

_ : : : P :
- Eie sotmelnstructlfons tgl #SBATCH --error=err_%j.txt
req_ues resourcgs rom siurm #SBATCH --partition=submit
2. Write abash script that executes #SBATCH --time=10:00
OurWOrkﬂOwasareCipe #SBATCH --mem-per-cpu=100
3. SubMIT it with:
sbatch submit.sh # activate environment
source ~/.bashrc
That's it! conda activate my_env

run analysis and transfer output
cd /home/submit/lavezzo/nobel-
winning-work/

python do_analysis.py

mv output.root /work/submit/lavezzo/

Workflows in Slurm

The power of batch computing is in parallelizing i /oin o |
your WorkﬂOWS = #1/bin/bash I

. :zg :!/bin/bash I
No standard recipe, depends on your workflow! wof seaf s ¢einveest
Typically, make another script to iterate over the o] s el e et
parameters or data files you need to process, and “©f £ 2] #58] ssourcn —partitionzsubnic

#SBATCH --time=10:00

. : #Q cond # --mem-per-cpu=
submit a job for each 1 k[
ﬁz tdr conq # activate environment

source ~/.bashrc

#rd conda activate my_env

cd

PYEH # run analysis and transfer output

MV 4 cd /home/submit/lavezzo/nobel-winning-work/
python do_analysis.py --parameter N

mv output.root /work/submit/lavezzo/

Data, scripts, environments, software, etc. you
access on SubMIT login nodes are also available on
SubMIT compute notes on Slurm.

Available resources: ~1000 cores, ~20 GPUs

Slurm allocates resources fairly amongst users: Mool I ool W
do not SubMIT large jobs on the log-in nodes! T e e———
| will kill them! And email you to run them on et
Slurm! - ——

monitoring page

https://submit.mit.edu/slurmmon/

HTCondor: the ‘H’ stands for ‘Horror’

HTCondor is the worst way to submit jobs

However, it has by far the most resources available:
the OSG, the MIT Tier 2 and the Tier 3 clusters can guarantee a couple of thousand of

cores at any given time, for free ()

HTCondor: the ‘H’ stands for ‘Horror’

HTCondor is the worst way to submit jobs

However, it has by far the most resources available:
the OSG, the MIT Tier 2 and the Tier 3 clusters can guarantee a couple of thousand of

cores at any given time, for free ()
OK: Why is it so bad?
Jobs are submitted to remote machines.

You do not have access to your data, environments, software, or scripts.
(Also: huge variability of hardware and software on the clusters, and each has its own kinks)

HTCondor: the ‘H’ stands for ‘Horror’

HTCondor is the worst way to submit jobs

However, it has by far the most resources available:
the OSG, the MIT Tier 2 and the Tier 3 clusters can guarantee a couple of thousand of
cores at any given time, for free ()

OK: Why is it so bad?
Jobs are submitted to remote machines.

You do not have access to your data, environments, software, or scripts.
(Also: huge variability of hardware and software on the clusters, and each has its own kinks)

OK: What am|1to do?

We have to transfer everything {data, env., software, scripts} to the job, by hand.
This is painful.

Wisdom

We have tried to step through the conceptual hurdles in this tutorial, which has
examples you can copy & paste.

There are also some real-list scripts available on our GitHub repo from real-life users,
which can be starting points for your work.

| will now explain the concepts at a slightly higher level.
More details are explained in our User’s Guide.

https://submit.mit.edu/submit-users-guide/tutorials/tutorial_2.html
https://github.com/mit-submit/submit-examples/tree/main/htcondor
https://submit.mit.edu/submit-users-guide/running.html#htcondor

SubMITting to HTCondor

Similarly to Slurm, we need to:

1. Request HTCondor the resources we want

2. Give anexecutable script that runs through our workflow

In HTCondor, these two are different scripts:

submit.sub script.sh

universe = vanilla #!/bin/bash

request disk = 1024

executable = script.sh echo "I am a HTCondor job!"
arguments = $(ProcId) echo "I have landed in $(hostname)"”
output = $(ClusterId).$(ProcId).out || echo "I have received parameter $1"
error = $(ClusterId).$(ProcId).err || echo "That's all!"

log = $(ClusterId).$(ProcId).log

+DESIRED Sites
queue 1

'mit_tier3"

Wisdom 1: transferring inputs

You cannot read things from SubMIT directly!i.e. /home, /work, /ceph are not
accessible from remote machines. You need to transfer whatever you need as input to
the remote machine your job is running to.

Via submission script

You can add the following to your submission script. Thisis limited to 250MB. This will
transfer your files to the compute node.

transfer_input files = <your comma-separated list of files>

Via XRootD

This allows you to read files remotely, but you need to set up certificates to
authenticate yourself to the network. You can then read data remotely in your
executable script. For example,

xrdcp root://submit50.mit.edu//data/user/1l/lavezzo/inputs.txt .

https://submit.mit.edu/submit-users-guide/storage.html#remote-reading-via-xrootd

Wisdom 2: transferring outputs

Presumably you're not running jobs as part of your evil plan to
melt the ice caps and kill the polar bears, but you need the outputs
of your job. You need to transfer these back to SubMIT.

Via submission script

Adding the following to your submission script will copy the outputs of your job back
to SubMIT automatically.

YES
ON_EXIT

should transfer_ files

when_to transfer output

Via XRootD

We can write out to SUbMIT with XRootD as well:
xrdcp output.txt root://submit50.mit.edu//data/user/1/lavezzo/outputs/

Wisdom 3: software

Again since the HTCondor nodes don't have access to the subMIT storage areas, you
need to distribute your software to the worker-node. This is further complicated that
the OS on each worker-node or cluster may be different.

Via CVMFS

CVMFSis mounted on subMIT and all clusters connected to subMIT via HTCondor,
and supports the distribution of containers. In order to use a container in your jobs,
you can specify which image you want via, e.g.

+SingularityImage = "/cvmfs/singularity.opensciencegrid.org/htc/rocky:9"

You can even distribute your own containers to CVMFS.

Viatransfer

If you don't need a lot of software, and you can package it (perhaps by compilingitina
way that is self-contained), you can transfer it via the methods outlines in the previous
section: either through the submission script or HTCondor.

What'’s best for me?

Runalong, heavy job, with O(10-100) cores

lterate over O(10-1000) parameters or input files
with a fairly lightweight job — Slurm

Run anything with more than a handful of cores
for more than a couple hours

lterate over many (> 1000) parameters or input
files, and I'm willing to spend some extra time — HTCondor
setting up the framework

Concluding thoughts

| hope to have transferred a fraction of my infinite wisdom about batch computing

More can be found onthe SubMIT User’s Guide, Tutorials, and Examples, including:
« Specific instructions to request resources

Commands to monitor jobs

Detailed recommendations for common hurdles in HTCondor jobs

Example, toy scripts to learn about batch computing

Specific, real-life examples of submission scrips provided by Users

,& ‘,

! l I.I
‘ .:E:::E:.

L 2 i

e Onegazi'llig‘n cores ‘

-

E 4
-
H Bl Massachusetts ‘

I I Institute of

Technology

https://submit.mit.edu/submit-users-guide/running.html
https://submit.mit.edu/submit-users-guide/tutorials/tutorial_2.html
https://github.com/mit-submit/submit-examples/tree/main/htcondor

	Slide 1: Batch Computing on SubMIT: minimizing the horrors of batch computing to make your research go fast and make your collaborators happy
	Slide 2: You, most likely
	Slide 3: You, most likely
	Slide 4: Here is the promise
	Slide 5: The horror of reality
	Slide 6: Our solution
	Slide 7: Our solution
	Slide 8: Let’s get serious: Slurm
	Slide 9: Let’s get serious: Slurm
	Slide 10: Workflows in Slurm
	Slide 11: HTCondor: the ‘H’ stands for ‘Horror’
	Slide 12: HTCondor: the ‘H’ stands for ‘Horror’
	Slide 13: HTCondor: the ‘H’ stands for ‘Horror’
	Slide 14: Wisdom
	Slide 15: SubMITting to HTCondor
	Slide 16: Wisdom 1: transferring inputs
	Slide 17: Wisdom 2: transferring outputs
	Slide 18: Wisdom 3: software
	Slide 19: What’s best for me?
	Slide 20: Concluding thoughts

