

BULK PROPERTY MEASUREMENTS MATHSPHENIX

Hao-Ren Jheng, on behalf of the sPHENIX Collaboration Massachusetts Institute of Technology Quark Matter 2025

MIT HIG group's work was supported by US DOE-NP

OVERVIEW

- SPHENIX is a brand-new general-purpose detector at RHIC
 - □ Completed installation in May 2023
 - □ Began the commissioning period in preparation for physics data taking in June 2023
- □ Has since collected high-quality physics data ■ sPHENIX serves as the central and essential component for completing RHIC's science mission to probe the inner workings of the QGP
 - □ Enables multi-scale probes and provides complementarity with the LHC measurements

SPHENIX PHYSICS PROGRAM

Cold QCD

Study proton spin, transverse momentum, and cold nuclear effects

Jet Physics

Vary momentum and angular scale of probe

20000000

Ρ g

Credit: Misaki Ouchida (Hokkaido University)

Hao-Ren Jheng

MVTX

- Tracking system vertex, timing resolution, momentum measurement (MVTX, INTT, TPC, TPOT)
 - Cale tem mid-rapidity full-azimum verage (EMCAL, iHCAL, oHCAL)
- Global event characterization detector (MBD, sEPD, ZDC, SMD)

Μντχ

g system — vertex, timing on, momentum measuremen TTTPC, TPOT)

- Calorimeter system mid-rapidity full-azimuth coverage (EMCAL, iHCAL, oHCAL)
- Global event characterization detector
 (MBD, sEPD, ZDC, SMD)

acking system — vertex, timing solution, momentum measurement TTTPC, TPOT)

Can tem — mid-rapidity full-azimutic, verage (EMCAL, iHCAL,

 Global event characterization detector (MBD, sEPD, ZDC, SMD)

FOCUS OF THIS TALK

- New results on the bulk properties from data collected during Run-2023 and -2024
 - **2** poster presentations in this conference
 - Long-range two-particle correlation in high-multiplicity p+p collisions: Indico page of the poster
 - Event plane determination with forward detectors: <u>Indico page of the poster</u>
 - □ 1 preliminary result
 - Neutral pion v₂ in Au+Au Collisions: <u>sPH-CONF-BULK-2024-01</u>
 - **2 physics papers**
 - Measurement of transverse energy per unit pseudorapidity, $dE_T/d\eta$ in Au+Au collisions: [Link to sPHENIX publication, arXiv] [Indico page of the poster]
 - Measurement of charged hadron multiplicity $dN_{ch}/d\eta$ in Au+Au collisions: [Link to sPHENIX publication, arXiv]

Bulk Global and collective properties of medium

TWO-PARTICLE CORRELATION IN PP COLLISIONS SPHENIX

- Measure long-range two-particle correlations in high-multiplicity pp collisions
 - □ Using silicon-tracks validation of the sPHENIX tracking and the performances of two silicon detectors, MVTX and INTT, which provide precise vertexing and timing
- Complementary measurements of the two-particle correlation in pp collisions to **PHENIX** publications

Hao-Ren Jheng

- on using sPHENIX forward detector, MBD and sEPD
- re jet and open heavy-flavor flow measurements
- :king system to measure the charged hadron v_2 in Au+Au

Poster by Ejiro Umaka [Poster # 824]

MEASUREMENT OF $\pi_0 V_2$ IN Au+Au Collisions SPHENIX

- \blacksquare Azimuthal anisotropy of π_0 as one of the calorimeter-based standard candle measurements
- EMCAL energy calibration: the energy scale is extracted from the $\pi_0 \rightarrow \gamma \gamma$ candidate invariant mass, then set to match simulation after the detector
 - effect smearing
- The reference flow vector is determined by signals in MBD and is propagated to the v₂ calculation

11

MEASUREMENT OF $\pi_0 V_2$ IN Au+Au Collisions SPHENIX

- \blacksquare The π_0 v₂ is measured as a function of centrality
 - \Box v₂ increases with centrality and levels off at around the 30–40% centrality class
- Extraction of $\pi_0 v_2$ from Run-2023 commissioning dataset
 - □ Consistent with the PHENIX measurement, made with much higher statistics, and validates sPHENIX event plane and π_0 reconstruction

MEASUREMENT OF $dE_T/d\eta$ IN Au+Au Collisions SPHENIX

- \blacksquare The transverse energy per unit pseudorapidity, dE_T/dη, measured by the full calorimeter system EMCAL + HCAL
 - \Box First dE_T/dn measurement with mid-rapidity full azimuthal coverage HCA
- Energy calibration
 - \Box EMCAL: $\pi_0 \rightarrow \gamma \gamma$ mass peak to match between data and simulation
 - □ HCAL: compared measured MIP peak from cosmic ray muons in data to simulation

MEASUREMENT OF dET/

- Excellent consistency between EMCAL and HCAL measurements — sensitive to energy deposit from different particle species and completely independent calibrations
- SPHENIX results are compatible with PHENIX and STAR measurements

Hao-Ren Jheng

Poster by Emma McLaughlin [Poster # 1062]

MEASUREMENT OF $dN_{ch}/d\eta$ IN Au+Au Collisions SPHEN

- unit pseudorapidity, $dN_{ch}/d\eta$, by the Intermediate Silicon Tracker, INTT
 - Counting tracklets, cluster pairs that point back to the event vertex
- Two analysis methods:
 - □ The combinatoric method: closely follows the PHENIX and **PHOBOS** publications
 - □ The closest-match method: adapted from the CMS measurements

Tracking-based standard candle measurement - Charged hadron multiplicity per

MEASUREMENT OF $dN_{ch}/d\eta$ IN Au+Au Collisions SPHENIX

SPHENIX measurement are consistent with previous RHIC publications from PHOBOS, PHENIX, and BRAHMS

Hao-Ren Jheng

Full azimuthal coverage at mid-rapidity, advantageous over PHENIX and PHOBOS

SUMMARY

- Bulk properties by all 3 groups of sPHENIX detector systems
 - \Box Tracking system: two-particle correlation, the charged-hadron multiplicity dN_{ch}/dη
 - \Box Calorimeter system: the azimuthal anisotropy of π_0 , the transverse energy dE_T/dη
 - □ Global event characterization system: event plane determination
- \blacksquare Results from measurements of the azimuthal anisotropy of π_0 , the transverse energy dE_T/dn, and the charged-hadron multiplicity dN_{ch}/dn are consistent with previous RHIC measurements
 - Provide strong foundation of the broad physics program of sPHENIX!

- Tracking system vertex, timing resolution, momentum measurement (MVTX, INTT, TPC, TPOT)
- Calorimeter system mid-rapidity full-azimuth coverage (EMCAL, iHCAL, oHCAL)
- Global event characterization detector (MBD, sEPD, ZDC, SMD)

MEASUREMENT OF $\pi_0 V_2$ IN Au+Au Collisions SPHENIX

■ Scalar product method $v_2{SP} = Re \frac{\langle q_{2,j}Q_2^{N|S^*}\rangle}{\sqrt{Q_2^S Q_2^{N^*}}}$

 $\Box q_{2,i} = e^{i2\phi_j}$: the 2nd-order q-vector of a π_0 candidate in an event with azimuthal angle ϕ_i

 $\Box Q_2 = \frac{1}{\sum_k w_k} \sum_k w_k e^{i2\phi_k}$: the reference flow vector measured by

the north and south arms of MBD, weighted by PMT charge

 $\blacksquare Q_2$ is then corrected for non-uniform acceptance using recentering and then flattening the associated event plane

 \Box The event plane angle Ψ_2 as a diagnostic and quality assurance

MEASUREMENT OF $\pi_0 V_2$ IN Au+Au Collisions SPHERIX

Background subtraction: $\begin{aligned} v_2^{\pi^0} &= v_2^M + \frac{v_2^M - v_2^{BG}}{S/B} \\ v_2^M &: \text{signal}, \mu - 2\sigma < M_{\gamma\gamma} < \mu + 2\sigma \\ v_2^{BG} &: \text{signal}, \mu + 3\sigma < M_{\gamma\gamma} < 0.5 \text{ GeV} \end{aligned}$

MEASUREMENT OF $dE_T/d\eta$ IN Au+Au Collisions

- The EMCAL-only and HCAL-only measurements in the most central 0-5% are overlaid to highlight their agreement
 - Sensitive to deposited energy from
 different particle species and completely
 independent calibration procedures
- Compatible with PHENIX and STAR, where measurements were performed either only with the electromagnetic calorimetry or a combination of tracks and electromagnetic calorimetry

MEASUREMENT OF $dE_T/d\eta \ln Au + Au C$

Uncertainty Source [%]	EMCal-Only	HCal-Only	Full Calorimeter
Calibration	2.6	2.7	2.1
Hadronic response	4.1	6.6	4.7
Modeling		2.5-3.0	1.6–1.9
Zero suppression thres.	D 1.0-3.6	0.2-0.3	0.8–2.7
z-vertex resolution	0.3–0.4	0.1-0.2	0.2–0.3
Acceptance	0.2–0.4	0.2–0.4	0.1–0.3
Total	5.3-6.5	7.7-7.9	5.6–6.3

- Dominant systematic uncertainty is the hadronic response evaluated by comparing the agreement of the single hadron response between data and simulation in beam tests of prototypes of the sPHENIX calorimeter system

Second largest uncertainty is the physics modeling — correction factors derived with HIJING and AMPT, and the η -dependent particle spectra measured by BRAHMS

MEASUREMENT OF dN_{ch}/dη IN Au+Au Collisions SPHENIX

- Results from two analysis methods are consistent with each other,
 - Statistically combined, closely following procedures in PDG and the CMS publication, specifically to account for the dominant correlated uncertainty
- dN_{ch}/dη at mid-rapidity, |η| < 0.3, for the sPHENIX measurement is consistent with all previous RHIC results from PHOBOS, PHENIX, and BRAHMS across all centrality intervals

MEASUREMENT OF $dN_{ch}/d\eta$ IN Au+Au Collisions SPHE

Source

Simulation statistics Cluster ADC selection Cluster ϕ -size selection Tracklet reconstruction criteria Machine and detector stability Model dependence Secondaries Detector misalignment

IOBE

Total

Correlated uncertainty in the weighted average result Uncorrelated uncertainty in the weighted average result Total uncertainty in the weighted average result

- the two methods because their differing sensitivities to combinatorial backgrounds
- Combination strategy separates the correlated and uncorrelated uncertainties. The weighted averaged of $dN_{ch}/d\eta$ based on the uncorrelated uncertainties

The combinatoric method [%]	The closest-match method [%]
0.1–0.6	0.2–0.9
3.8-8.8	2.8-5.4
< 0.1	< 0.2
0.7–1.2	< 1.7
< 1.0	0.1–1.6
0.5-5.7	1.6–3.8
< 2.6	< 3.2
0.5–0.9	
4.1–10.3	3.5–6.9
3.5%-	-7.9%
< 0	.9%
3.5%-	-7.9%

Dominant systematic uncertainty is the INTT cluster ADC selection — difference between

