

Long-range near-side correlation in e⁺e⁻ collisions at 183-209 GeV with ALEPH archived data

Michael Peters, in collaboration with Yu-Chen (Janice) Chen, Yi-Chen, Pao-Ti Chang, Yen-Jie Lee, and Marcello Maggi, Austin Baty, Anthony Badea, Chris McGinn, Jesse Thaler, Gian Michelle Innocenti, and Tzu-An Sheng

arXiv: <u>2312.05084</u> Analysis note: <u>2309.09874</u> [Phys. Lett. B 856, 138957 (2024)]

Long-range near-side correlations: The "Ridge" in HI collisions

4/8/2025

Ridge correlation: long-range (large Δη) near-side (small Δφ)

- Large $\Delta \eta$ -> causally disconnected for single point-like interaction, hence "long-range"
- Hints at existence of collective behavior, i.e. QGP

The "Ridge" in pp collisions

- Also observed in high-multiplicity pp collisions at the LHC in 2012
- Initial-state anisotropy may create ridge in this case
 - System thought to be too small to produce collective interactions

The "Ridge" in pp collisions

- Proposed explanations include:
 - Initial-stage effect (e.g. CGC)
 - Escape mechanism, after one or a few scatterings (AMPT, Pythia with Rope Mechanism, multi-parton scattering...)
 - Final-state effect due to "mini-QGP"
 - Among others...

Emergence of "ridge-like" behavior?

4/8/2025

Long-range correlations in e+e- with ALEPH (Peters, QM2025)

5

e+e- collisions: a QCD laboratory

- Many advantages as a reference system for correlation studies:
 - No gluon ISR, no beam remnant
 - Structureless beam (no beam PDF, no MPI)
 - Point-like collisions (good kinematic control for final states)
 - Colorless initial state
 - Parton shower and hadronization occur in vacuum

ALEPH data re-analysis

- Hermetic general-purpose
 detector on LEP collider
- Large e+e- datasets taken from 1989-2000
- Pythia6 MC archived along with data
- Re-analyzed using MIT
 Open Data Format MOD

4/8/2025

*Acknowledgement: Roberto Tenchini and Guenther Dissertori from the ALEPH collaboration, for the useful comments and suggestions on the use of ALEPH data

LEP I and LEP II datasets

• LEP I dataset (1992-1995): Z-pole energies (91 GeV)

4/8/2025

- LEP II dataset (1996-2000): higher energy (183-209 GeV), significant WW production
 - WW events dominate high-multiplicity data (two color strings instead of one)

Thrust Distribution

- Thrust measures event shape, from "spherical" (thrust=0.5) to "pencil-like" (thrust=1)
- Good agreement between thrust
 distribution in this analysis and previous
 ALEPH Collaboration analyses

$$T = \max_{\hat{n}} \frac{\sum_{i} |\overrightarrow{p_{i}} \cdot \hat{n}|}{\sum_{i} |\overrightarrow{p_{i}}|}$$

Two-particle correlation w.r.t. the thrust axis

Thrust axis used as reference to focus on medium expanding perpendicular to outgoing final-state axis Charged Hadron dN/dŋ

Cross-check: $dN/d\eta$ in e+e- relative to thrust axis similar to pp and AuAu results relative to beam axis

Two-particle correlation: the observable

Background reduction via event-mixing

Extraction of observable

$$\frac{1}{N_{\rm trk}^{\rm corr}} \frac{d^2 N^{\rm pair}}{d\Delta \eta d\Delta \phi} = B(0,0) \times \frac{S(\Delta \eta, \Delta \phi)}{B(\Delta \eta, \Delta \phi)}$$

4/8/2025

13

Previous two-particle correlation results

 10^{2} 2019 re-analysis of LEP I 10 - BELLE, e⁺e⁻ √s=10.52 GeV data showed no significant — ALEPH, e⁺e⁻ √s=91.2 GeV yield associated with Associated yield 10-"ridge" feature 95% 10⁻² 95% 95% 95% • 2022 BELLE analysis 10⁻³ ⊧ agreed 10-4 95% 96% 10 rchived Data e⁺e⁻, √s = 183-209 GeV 10^{-6} $>5\sigma$ 10⁻⁷ 10⁻⁸-35 15 30

14

4/8/2025

25 Ridge-like yield estimation

Two-particle correlation >183 GeV at LEP II

High-multiplicity (Ntrack>=50) LEP II results

"Flow-like trend" coefficients

 $Y(\Delta \phi)$

Similarity to low-multiplicity pp collisions

Measured coefficients seem to be **similar to CMS and ALICE measurements** in low-multiplicity pp collisions at a variety of beam energies

Conclusions

- e+e- collisions allow for investigation of smallest possible collision systems for flow-like characteristics
- Re-analysis of LEP II data reveals possible signs of an excess long-range near-side yield relative to MC
 - Hints at a "bridge" between pure hard scattering and flow in pp collisions
- Plenty of avenues for further use of e+e- collision data as a versatile laboratory for QCD investigation

Other Results, Here and Elsewhere

- Yen-Jie Lee's poster at this conference (<u>https://indi.to/Dz7rM</u>)
 - "Measurement of the N-point energyenergy correlator from the collinear limit to the back-to-back limit in e+e- collisions at 91 GeV with the ALEPH experiment"
- Jet substructure measurements
 [JHEP 06 (2022) 008]
- Re-analysis of DELPHI data (under construction, stay tuned!)

Other observables: Jet Substructure

- Rising edge of jet energy spectrum sensitive to jet function
- Jet energy sharing (*z_g*) shows similar trend between e+eand pp collisions

Other observables: Energy-Energy Correlator

- Theorists (Ian Moult + collaborators, Iain Stewart, et al.) interested in this quantity in particular:
 - Directly sensitive to theory parameters (ex: *α_S*)
 - Constraining non-perturbative parameters in lattice QCD
- Unique opportunity in e⁺ e⁻ to access the 2-point correlator from collinear to back-to-back limit
- Excellent agreement between archived data and theory calculation

4/8/2025

• Analysis currently in internal review

24

JA 11 1 1252

Other datasets: DELPHI archived data

- Extremely useful as a cross-check of ALEPH reanalyses
- Re-analysis actively in progress

/8/2025

 Thrust distribution already substantially similar to ALEPH, EEC corrections under active development

25

Azimuthal differential associated yield $Y(\Delta\phi)$

Understanding 2PC in *e*+*e*---- Intra-jet correlations

Understanding 2PC in *e*+*e*---- Inter-jet correlations

Understanding 2PC in $_{e^+e^-}$ — Ridge(-like) correlations

Searching for emergence of azimuthal correlation in e^+e^-

What will happen in higher energy LEP-II sample?

- ∘ Allowing for higher event multiplicity up to $N_{Trk} \ge 50$
- Opening up more complicated color-string configuration
 Dominant W⁺W⁺ event at high multiplicity showcases a
 2-color-string configuration

3

Selected list of analyses

e⁺e⁻

•ALEPH LEP1 (91 GeV)PRL 123 (2019) 21, 212002•ALEPH LEP2 (183-209 GeV):Phys. Lett. B 856, 138957 (2024)•Belle Off-resonance 10.52 GeV :PRL 128 (2022) 14, 142005•Belle On-resonance (Y(4S)):JHEP 03 (2023) 171

γp

CMS pPb photonuclear:
ZEUS ep neutral current DIS:
ZEUS ep photonuclear:
H1 ep neutral current DIS: (preliminary) <u>H1prelim-20-033</u>

γPb

•ATLAS PbPb photonuclear:

PRC 104 (2021) 1, 014903

pp

 •ALICE MB:
 https://arxiv.org/pdf/2311.14357.pdf

 •CMS Single Jet in pp:
 CMS-HIN-21-013 arXiv:2312.17103

High quality archived data

Published results can be reproduced

Big thanks to ALEPH collaboration and MIT open data

LEP-II data & MC processes

Vsv.s.X-section

Year vs. Vs vs. int. L

Year	Mean energy	Luminosity
	\sqrt{s} [GeV]	$[pb^{-1}]$
1995, 1997	130.3	6
	136.3	6
	140.2	1
1996	161.3	12
	172.1	12
1997	182.7	60
1998	188.6	180
1999	191.6	30
	195.5	90
	199.5	90
	201.8	40
2000	204.8	80
	206.5	130
	208.0	8
Total	130 - 209	745

LEP-II event selections

Acceptance Polar angle of sphericity axis: $7\pi/36 < \theta_{lab} < 29\pi/36$

Hadronic event selection ≥ 5 tracks $E_{chgd.} \geq 15$ GeV

LEP-II event selections

LEP-II physics processes

 $e^+e^- \rightarrow W^+W^- \rightarrow 4f$

Selection

Residual MC correction

Track Selection:

- Particle flow candidate 0, 1, 2 (charged hadron / e^{\pm} / μ^{\pm})
- Number of TPC hits for a charged tracks (N_{TPC}) >= 4, χ^2 /ndf < 1000
- |d0| < 2 cm
- |z0|< 10 cm
- |cosθ|<0.94
- $p_T > 0.2 \text{ GeV}$ (transverse momentum with respect to beam axis)

Neutral Hadron Selection:

- Particle flow candidate 4, 5 (ECAL / HCAL object)
- E> 0.4 GeV
- |cosθ|<0.98

• Event Selection:

- Number of good charged particles >= 5 (including charged hadrons and leptons)
- Number of good ch+neu. particles >= 13
- E_{charged} > 15 GeV
- $|\cos(\theta_{\text{sphericity}})| < 0.82$

Corrections

• To calibrate the nonuniform detection efficiency and misconstruction bias

• Reconstructed tracks are weighted by the inverse of the efficiency correction factor:

$$\varepsilon(p_{\rm T},\theta,\phi,{\rm N}_{\rm trk}^{\rm rec}) = \left[\frac{d^3{\rm N}^{\rm reco}}{dp_{\rm T}d\theta d\phi} / \frac{d^3{\rm N}^{\rm gen}}{dp_{\rm T}d\theta d\phi}\right]_{{\rm N}_{\rm trk}^{\rm rec}}$$

• A closure test is performed by comparing the p_T , θ , ϕ distributions of the generator level and those of the corrected reconstructed level

Selection & efficiency correction

Two-particle correlations

Corrections

• To deal with remaining possible reconstruction effects

Bin-by-bin correction: the correction factor is derived from the histogram ratio of MC correlation functions at the reconstruction and generator level as

$$C(\Delta \phi) = \frac{Y(\Delta \phi)_{\text{gen},i_g}}{Y(\Delta \phi)_{\text{reco},i_r}}$$

• Final data correlation results are obtained from the multiplication of the original correlation function with the bin-by-bin correction factor

Selection & efficiency correction

Two-particle correlations

 Efficiency correction
 Residual MC correction Long-range correlations (c.f. MC)

LEP1

 \cap