Beam Backgrounds

FCC-ee design parameters

Summary of design parameters for FCC-ee

- Still being optimized different lattices available (v22/23/24)
- Note the bunch spacings at the different energies

	Ζ	W^+W^-	ZH	${f t} {ar t}$
Beam energy (GeV)	45.6	80	120	182.5
Luminosity / IP $(10^{34} \text{ cm}^{-2} \text{s}^{-1})$	144	20	7.5	1.45
Beam current (mA)	1 292	135	26.8	5.0
Colliding bunches / beam	11200	1852	300	60
Bunch spacing (ns)	27	163	1 008	4725
σ_x^* (μ m)	8.84	21.8	12.6	36.9
σ_u^* (nm)	38.1	44.7	31.6	43.0
σ_z (mm) SR / BS	5.15 / 15.2	3.46 / 5.28	3.26 / 5.59	1.91 / 2.34
σ_{δ} (%) SR / BS	0.039 / 0.115	0.069 / 0.105	0.102 / 0.176	0.152 / 0.186

Machine Detector Interface (MDI)

MDI note released last week, info taken from there (<u>https://repository.cern/records/p44x1-18z28</u>)

Complex MDI at FCC-ee because the MDI equipment is partially in the detector volume

- Final Focusing magnets (FFQ QC1 in picture) 1.
- Compensating solenoid of (-5 T) to compensate for detector magnetic field (2 T)2.
- 3. Beam pipe split/merge at 1.1 m
- LumiCal in forward region just before beams split/merge 4.

Sources of beam induced backgrounds

Single beam induced (e+ or e–)

- Synchrotron Radiation (SR)
 - From last bending magnet (~ 100 m away) \rightarrow collimators to reduce
 - From detector + compensating magnets inside detector volume
 - Samples are produced to get the SR photon flux, but still being validated
- Beam gas scattering interactions near SR collimators might rise to showers (not yet studied)
- Beam halo losses
- Others (injection backgrounds, backgrounds related to beam instabilities, ...)

Luminosity backgrounds – processes due to beam-beam interactions (e+e-)

- Incoherent Pair Creation (IPC)
- Radiative Bhabha (RB) forward e+ e– can cause showers in focusing quadrupoles
- Beamstrahlung (BS) synchrotron radiation due to EM field of the opposing beam
- Two-photon backgrounds (muons, hadrons) less impact on detector occupancy

Z pole most severe due to highest luminosity for all sources

Beam induced backgrounds

Generally considered that IPCs and radiative Bhabha contributes the most to beam-induced backgrounds for the detectors

- Dose calculations on inner vertex layer show highest contribution from IPCs
- RB becomes more important in forward region

Incoherent Pair Creation

IPCs calculated with Guinea Pig

- Pairs are tracked in the EM fields of the beams by GP (slow!)
 - Detector magnetic field not taken into account (may have an impact on local occupancy implementing atm.)
- Occupancy order of 100-200 MHz/cm2 at first VTX
- More severe for drift chamber with large integration time (400 ns) and space (similarly for LAr calorimetry)
- Cuts on energy deposits or topology can reduce the background "on-the-chip"
 - To be studied for VTX to suppress background contamination

IPC particles created 1300 at Z 3300 at tt per BX

- But majority outside of VTX acceptance

-	Parameter	Units	Z	WW	ZH	$t \overline{t}$
	beam energy	GeV	45.6	80.0	120.0	182.5
	IPC per Bunch Crossing		1300	1800	2700	3300
	Bunch Spacing	ns	30	345	1225	7598

Radiative Bhabha (RB)

RB calculated using **BBBrem**

- Calculates precisely the e+e- cross-section produces events
- Only t-channel implemented, dominates the forward region
- No cut on polar angle of outgoing leptons, but cut on minimum energy transfer
- Effects of beam sizes taken into account

Cross-sections depend heavily on cuts applied

- 100 mbarn means ~ 5000 such RB processes per BX at Z-pole (mostly going forward)
- Backscattering effect via quadrupoles being studied (??)

				σ_{RB} [mbarn]		Luminosity/IP	
$E_0[GeV]$	Lattice	(Cutoff	$\delta > 3\%$	$\delta > 50\%$	$[cm^{-2}s^{-1}]$	$[ab^{-1}yr^{-1}]$
15 ((7)		<u></u>		226.4	32.9	1.99×10^{36}	20.0
43.0 (Z)	V330 (V22)	$1\sigma_y$	33.7 nm	112.1	18.2	1.82×10^{-5}	20.9
1925 (T)	w520 (V22)			251.3	37.0	1.94×1034	0.14
162.3 (1)	V350 (V22)	$1\sigma_y$	69.0 nm	118.5	19.2	1.24×10^{-1}	0.14

Two-photon background

IPCs mainly focus on e+e– pair creation due to potential effects on detector occupancy and machine components

- Also muon pair creation possible with similar processes, having similar cross-section as IPCs
- Not considered to impact detector occupancies
- But might affect physics (modeling, differential distributions)

Similarly for e+e– \rightarrow e+e– $\gamma\gamma \rightarrow$ e+e– + hadrons

- Difficult to model \rightarrow challenging for physics
- Cross-section parameterized (in Pythia and also in GP)
- Typical cross-section order of 500 nb (6 orders of magnitude lower than RB)
- Guinea pig produces the photon spectrum
 - Can also produce the hadronization and fragmentation (Jetset)
 - Or interfaced to another MC program (e.g. Whizard) by reading the photon spectra
- Producing some test samples right now

Hit occupancy from IPCs

From Guinea Pig, we calculate a background of ~ 200 MHz/cm2 on the first layer

- This should be verified independently

How does the background rate affect the single-cell pixels with a given readout time?

- Suppose we have pixels of 25x25um (target), with a readout time of 1us (large? conservative?)
- The probability to have a background event in a single pixel is 1.25e-3 = 0.125%
- This number is very small, therefore the (large) readout time is not critical for background occupancy (given the small cell size)
 - The occupancy still can be high w.r.t. to the readout of all cells from the entire layer

Does the same picture hold with trigger-less design?

Overview of samples + software

Analysis repository: https://github.com/jeyserma/FCCPhysics/tree/main/beam_backgrounds/vtx

- Changed code a bit (using ROOT histograms only, no BOOST due to incompatibility)
- Will push the code to generate the samples (at CERN)

Samples produced (focus on CLD Vertex detector with layout CLD_o2_v05)

- guineaPig_andrea_June2024_v23
- guineaPig_andrea_June2024_v23_vtx000
- FCCee_Z_4IP_04may23_FCCee_Z
- FCCee_Z_4IP_04may23_FCCee_Z_n128
- \rightarrow official samples
- \rightarrow official samples (but IPCs placed at IP)
- \rightarrow re-generation of official samples, as a cross-check
- \rightarrow reduced lattice parameter from 256 to 128 cells (drastic speed up)

The 4 above samples have been validated and give the same physical results

Samples under production/validation

- Z→hadrons physics sample (today/tomorrow)
- With detector magnetic field (this week)
- Radiative Bhabha (this week) only direct effect, no propagation yet to the quadrupoles)
- Synchrotron Radiation (this week)
- Two-photon backgrounds with muons and hadrons

TODO for students

- 1. Event display for IPCs: plot the phi-z 2D distribution for 1 event
- 2. Make comparison of the 4 samples above (energy deposit, hitmaps, occupancy)
- 3. For the baseline samples, calculate again the occupancy and convert it to a hit rate Hz/cm2 (should match the order or 100-200 MHz/cm2 as in the MDI note)
- 4. Detailed comparison of default and n128

BACKUP MAPS detectors

Achieving simultaneously $\sigma \approx 3 \ \mu m$, < 0.1 % X0 / layer, < 50 mW/cm², $\Delta t \approx O(100)$ ns within a single sensor seems unlikely with currently available CMOS technologies

Guidance from devices constructed or under advanced devt.

- STAR-PXL: 2 layers (1600 cm²), 0.37 % X₀/layer, 170 mW/cm² (~300 W), air cooled (10 m/s), < 4 μm Not adapted to FCCee: ~ 200 μs, bulky services (no end-caps); wind mill geom. (?)
- ALICE-ITS2: 7 layers (> 10 m²), 0.35 % X₀/layer, < 50 mW/cm² (~500 W), air + water cooled, 5 μm Not adapted to FCCee: ~ 5-10 μs ?, mild hermiticity (end-cap) constraints; wind mill geom. (?)
- MU3E: 4 layers (~ 1.1 m²), 0.12 % X₀/layer, < 250-350 mW/cm² (< 4 kW), He cooled, < 20 ns Not adapted to FCCee: pixels of 80x80 μm² → < 30 μm, bulky services (no end-caps)
- CBM-MVD: 4 2-sided stations (2000 cm²), < 100 mW/cm² (< 200 W), cooled mecha. support (TPG), Not directly adapted to FCCee: 5-6 μm, 0.5 % X₀/2-layer, bulky services (no end-caps), 5 μs (< 0.5 μs possible)
- ALICE-ITS3: 3 layers (1200 cm²), < 0.1 % X₀/layer, ~ 50 mW/cm² (~60 W), air cooled (8 m/s),~ 5 μm, ~ 2 MHz/cm²
 Not directly adapted to FCCee: ~ 2-10 μs, somewhat bulky services (mild constraints from end-caps)
- ATLAS-ITk: 5 barrel layers + end-cap rings (13 m²), 3D & planar hybrid pixels (25x100 μm² & 50x50 μm²)
 Not adapted to FCCee: ~ 10 μm, > 1% X₀/layer, O(1) W/cm², active cooling, cold operation, etc.

Numerous CMOS Sensors in Use or Development (illustrative/partial sub-sample)

Name	Expt	Sub-syst	Area	Δ Pos., Time	Power (fid.)	Technology	Comment
ALPIDE	ALICE-ITS2	Vx & In. Trkr	10 m²	5 μm, ≤ 10 μs	≤ 50 mW/cm²	TJsc 180 nm EPI	In operation
MOSAIX	ALICE-ITS3	Vx only	0.12 m²	5 μm, 2-10 μs	\leq 40 mW/cm ² ?	TPSco 65 nm EPI	Wafer scale CPS
FASTPIX	\rightarrow HL-LHC	Demonstr.		≥ 1 µm, ≤ 100 ps	+++	TJsc 180 nm EPI	Timing & Rad. Tol.
MonoPix	\rightarrow ATLAS	ITk	few m²	< 10 µm, ≤ 20 ns	> 0.5 W/cm ²	TJsc 180 nm EPI	Not retained
CACTUS	FCC, eIC,	Timing det.	few m²	< 100 ps	< 300 mW/cm²	LF 150 nm	Proto., 1 mm ² pixels
MALTA	HL-LHC,	Fast det.	few m ²	36x40 μm², 25 ns	> 100 mW/cm²	TJsc 180 nm EPI	512x512 pixels
MIMOSIS	CBM/FAIR	Vx & In. Trkr	0.16 m²	5 μm, 5 μs	< 100 mW/cm ²	TJsc 180 nm EPI	Fixed target HI expt
TaichuPix	CEPC	Vx & In. Trkr		≤ 5 µm	90-160 mW/cm ²	TJsc 180 nm EPI	8x8 μm² n-well
NAPA	SiD/C3	Trkr, (calo.)		7μm pitch, O(ns)	20 mW/cm²	TPSCo 65 nm EPI	Target values
ARCADIA	IDEA/FCCee	Vx & In. Trkr		10-50 μm		LF 110 nm	Working horse
CLICpix	CLICdp	Vx & In. Trkr		$25\ \mu\text{m}$ pitch, $10\ \text{ns}$		TPSCo 65 nm EPI	Follows TimePix
OBELIX	Belle-II	Vx (7 layers)	O(1) m²	\leq 10 μ m, \leq 100 ns	≈ 200 mW/cm²	TJsc 180 nm EPI	Follows MonoPix
MuPix	Mu3e expt	Vx & Trkr		≤ 30 µm, ≤ 20 ns	≤ 350 mW/cm²	HV TJsc 180 nm	Fixed target expt

RSU Architecture

12 RSU per segment, 12 TILEs per RSU

144 TILEs can be switched on, biased and read out independently

Programmable Switches

One TILE is 1/864=0.116% of L0 acceptance

Table 2: Main	parameters	of the	ultra-light	inner vertex	detector.
---------------	------------	--------	-------------	--------------	-----------

Layer	Sensors	Radius [mm]	RSUs in ϕ	RSUs in z	Length [mm]	Coverage
1	2	13.7	2	10	108.3	$ \cos(\theta) < 0.992$
2	2	20.35	3	13	140.8	$ \cos(\theta) < 0.990$
3	4	27	4	8 (-z)/10 (+z)	199.5	$ \cos(\theta) < 0.990$
4	4	33.65	5	10 (-z)/8 (+z)	199.5	$ \cos(\theta) < 0.986$
IDEA https://arxiv.org/abs/2502.2122						