

Proposal to EIC: IR Magnets

H. Witte, on behalf of MIT Team (Z. Hartwig, O. Hen, E. Ihloff, J. Bessuille, S. Chamberlain, R. Vieira, S. Smith, T. Golfinopoulos, ...)

Dr. Holger Witte Associate Director, MIT Bates

3/11/2025

One should always start with a joke...

- ... but I don't have one (at least a good one)
- An interesting story will have to do
- 1980: problems with the Isabelle magnet
 - Isabelle: 400 GeV Center of Mass energy
 - Required field: 5T
 - Only first magnet worked, others after 45 training quenches
- The Bob Palmer Magnet ('the Rebellion')
 - Alvin Tollestrup, Carl Goodzeit, Rick Fernow, Bill Sampson...
 - \$40k budget (Nick Samios)
 - 'Borrowed' cable from FNAL
 - Peter Marston, MIT: machining of tooling parts, cured stack of cable (a bill that was never paid?)

Overview

- Proposal
- Challenges B0pF
- New concept for B0pF
 - Quenches
 - Structural improvements
- Workplan/Schedule

Proposal

- MIT takes responsibility for B0pF
 - Design
 - Detectors
 - Cryostat
 - Integration
 - Testing
- Manufacturing
 - In-house or with industrial partner
- 'Turn-key' delivery

EIC IR: Overview

• Apertures

Skew quads, vertical corrector

Each rectangle: required minimum aperture, not magnet size Things are tight – Tapered CCT magnets to solve (some) of the issues

B0pF Forward Spectrometer

- Measures particles emerging from the breakup of the colliding hadrons
- Only ~6m from IP
 - Beams not very separated (crossing angle 25mrad)
- Beams share magnet aperture
 - Hadrons: 1.3T field
 - Electrons: 14T/m gradient
- Present implementation: combined function magnet
 - Large aperture quadrupole; zero field axis shifted with dipole
- Space constraints/large aperture
 - Requires 2K
- B0pF is essential for the forward side of the IR (beyond its importance for physics)

6

Courtesy of K. Hamdi (BNL)

Massachusetts Institute of Technology

B0pF – Initial Workplan

- Re-evaluate design of B0pF
- Present implementation is based large aperture quadrupole, which may not be ideal
 - Preliminary studies show that a pure dipole could lead to a lower peak field
 - Requires bucking coil for electron beam
- Address structural and quench issues
 - Larger cable
 - Approach: wire in groove
 - Individual turns supported by steel former
 - VPI soldering technique, developed at MIT (PSFC)
 - Used successfully for HTS, transfer concept to LTS
 - (NbTi has a history of performance in soldered configurations)

Statement of Problem

- B0pF: large aperture, high field magnet
 - Aperture: ~0.6m
 - B_{peak}, wire: 4.8T
 - Stored energy: 800kJ
- Direct wind technology limitations
 - HFDW magnet trained to only ~1260A
 - ~3.15T aperture field, ~80mm aperture
 - (designed for 5.6T)
 - Small cable (1.42mm dia)
 - Stored energy: ~28kJ
- Challenges direct wind
 - mechanically 'soft' structure
 - Large cable not possible (intrinsic limitation)

100 80 60

> 40 20

> > -100

0

100

• Low current: **quench protection** issues

0.5

mm

7.14×10

10

20

B0PF Peak Field Calculation (energize hadron dipole and quadrupole in series with 1058A)

B0PF quench simulation results

0.750hm dump resistor /10ms quench delay/0.1V voltage threshold /3-loop protection circuits/no QP heater

Wire spacing – transverse quench propagation velocity?

B0pF – New Design

- Based on pure dipole (CCT)
 - Lower peak field on wire: 2T vs 4.7T
- Larger Cable: 6.25mm² vs 1.2mm²
 - 1.065mm strand, Cu:Sc 1.6
 - 7 strands
- Quenches safely (70K, single dump resistor)
 - 20 ms delay
- Margin: 50%
- Energy: 400kJ vs 800kJ
- Compensation concept
 - Bucking coil reduces field to mT
 - Iron collar (also return yoke for quad)

Addressing the Mechanical Issues

- Direct wind technique:
 - Voids are filled with fibre glass cloth
 - Tension roving overwrap
 - Fill with epoxy
- Can this be supported better?
 - Use same technique which was successful for 20T HTS large aperture magnet for fusion
 - Wire in groove
 - Key: vacuum pressure solder impregnation
 - Peak IxB: 800 kN/m (B0pF: two orders of magnitude lower)
- Restrict movement, avoid quenches

What was the SPARC Toroidal Field Model (TFMC) Coil Project?

1. Developed REBCO conductor technologies

3. Built and commissioned the test facility (2020-2021)

Massachusetts Institute of Technology

2. Designed and built the TF model coil

Completed in ~4 years by MIT and CFS in partnership with our vendors

The TFMC Project in one picture: magnet and test facility

The TFMC was designed and primarily fabricated (w/ external vendors) and assembled at MIT with REBCO procurement+ QA/QC and pancake winding at CFS

Massachusetts Institute of Technology

The TFMC Project in one picture: magnet and test facility

The TFMC is a large scale 20 T no-insulation REBCO magnet

Nominal Design Parameter	Value			
Number of pancakes	16			
Total turns	256			
Total REBCO tape	270 km			
Operating temperature	20 K			
Coolant type	Supercrit. He			
Operating coolant pressure	20 bar (max)			
Operating terminal current	40 kA			
Peak magnetic field	20 T			
Peak IxB force on REBCO	800 kN/m			
Inductance	0.14 H			
Magnetic stored energy	110 MJ			
WP mass	5,113 kg			
WP current density	153 A/mm ²			
WP + case mass	10,058 kg			
WP + case linear size	2.9 x 1.9 m			

LL #3: REBCO has proven impressively resilient to vacuum pressure solder impregnation in VIPER cables and TFMC

- VPI soldering was successfully developed for VIPER cables and for TFMC
- Process results in acceptable solder-induced Ic degradation (~2-3%) for full-scale HTS conductors
- Over 100+ VPI solder processes to date
 - Adaptation to cables, coils, plates, ...
- VPI soldering REBCO is a critical enabler:
 - 1. Demonstrated stability against high IxB cyclic loads
 - 2. Enabled simple, robust, $\sim n\Omega$ electrical joints
 - 3. Provides high levels of thermal stability
- For B0pF: highest performance VPI solder to immobilize NbTi cable, allowing traditional insulation technique

REBCO survive and enable highquality solder with low-frequency, small voids over long lengths with excellent bonding to solve challenges in high-field magnets

LL #4: VPI solder stabilized REBCO has survived high IxB loading, relevant axial strain, and thermal cycling

VIPER Cables: Consistent, stable Ic (<5% Ic degradation) after 1500 IxB cycles at 382 kN/m loading (all angles on REBCO stack) with ~0.3% axial strain and thermal cycles

TFMC: Negligible Ic degradation after fabrication and several IxB cycles at >800 kN/m (perp. to REBCO plane) (small, isolated damage in low-frequency solder voids)

Massachusetts Institute of Technology

REBCO operational performance at the tape- or stack-level to date exceeds what is required for high-field SC fusion cables/magnets.

VPI Soldering

VPI solder assembly (MIT)

Direct Wind - Coil Construction

- · Cross section drawing;
 - Inner Helium Vessel (Coil Support Tube).
 - 12 layers of 6 around 1 superconducting cable (1.575mm dia.).
 - \circ Wound in pairs
 - Each layer wound on B-stage substrate.
 - Large gaps filled with 5 layers b-stage fiberglass cloth.
 - Interstitial areas between conductors, filled with Stycast 2850 FT.
 - Tension Roving added after each double layer (20lbs@ 18 turns/inch)
 - .75mm thick layer of machined fiberglass (after each double layer).
 - Outer compression sleeve (.1mm diametric interference fit with coil).

CMS@LHC ETL Evaporators/Cooling Plates

- Need very thin Al plates (6.35 mm thick /~ 3 m linear size)
- Silicon detectors need to operate at -25C with good uniformity (1K) •
- Only 98mm space available
- CO2 evaporative cooling
 - Stainless cooling tubes
 - Need excellent thermal contact: vacuum-bagged reflow soldering (adaptation of VPI process)

Massachusetts Institute of Technology

CMS Phase II Endcap FTI + CE

LBNL: CCT Magnet

- What are the chances of this working?
- LBNL experience Nb_3Sn

Transverse current density with cos-theta distribution approaches a perfect dipole current density distribution

LBNL - CCT

CCT1

- 2.5 T short-sample dipole
- 50 mm clear bore
- 8 strd. NbTi cable
- not impregnated
- 11/2013: tested up to 2.5 T

CCT2

- 5.3 T short-sample dipole
- 90 mm clear bore
- 23 strd. NbTi cable (0.8 mm SSC Inner)
- epoxy impregnated
- 5/2015: tested up to 4.7 T

CCT2

CCT3/4

- 10.5 T bore field at round wire short-sample (RRP 54/61)
- 90 mm clear bore
- CCT3 03/2016: reached bore field=7.4 T (conductor damage)

CCT3/4

CCT4 08/2017: reached bore field=9.1 T (substantial training)

CCT5

- 9.7 T bore field at round wire short-sample (RRP 108/127)
- 90 mm clear bore
- 10/2018: Achieved 8.51T (87.7% short-sample)
- Still substantial training, but improved from CCT4

Why B0pF?

- B0pF important not only for physics but also for machine
 - Separation between beams
- Standalone magnet
 - Relatively easy to separate out
- Combination with detectors MIT can provide complete package
- Not that sensitive to conductor placement
 - Bucking coil wrecks havoc on field quality sextupole (known)
 - Large aperture

Initial Work Plan

- Conceptual EM Design
 - B0pF: study dipole vs. quadrupole
 - Fringe field
 - Bucking coil for electron quad
 - Basic quench analysis
 - Margin/loadline
 - Choice of conductor/cable
 - Field quality
 - Field map for physics
 - Milestone: preliminary choice of design concept
- Structural analysis
 - Stress/strain analysis of typical direct wind magnet
 - Stress/strain analysis of improved design

Preliminary Schedule

										2025
ID TYPE	TYPE	ት SUBJECT	STATUS	START DATE 1	FINISH DATE	DURATION 🌞	*	Feb	Q1 Mar	Q2 Q3 Q4 Q1 Q2 Q2 Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May
63	MILESTONE	Project Start	New	06/02/2025	06/02/2025					• 06/02/2025 Project Start
53	PHASE	✓ Requirements/Specification Document	New	06/03/2025	06/30/2025	20 days				06/03/2025 - 06/30/2025 Requirements/Specification Document
55	TASK	Q0eF	New	06/03/2025	06/30/2025	20 days				06/03/2025 06/30/2025 Q0eF
54	TASK	B0pF	New	06/03/2025	06/30/2025	20 days				06/03/2025 06/30/2025 B0pF
51	PHASE	✓ EM Design B0pF	New	07/01/2025	08/26/2025	41 days				07/01/2025 08/26/2025 EM Design B0pF
56	TASK	B0pF Dipole Design	New	07/01/2025	07/28/2025	20 days				07/01/2025 07/28/2025 B0pF Dipole Design
57	TASK	B0pF Design Quadrupole	New	07/29/2025	08/25/2025	20 days				07/29/2025 08/25/2025 B0pF Design Quadrupole
62	MILESTONE	Preliminary choice Strand/Cable	New	08/26/2025	08/26/2025					08/26/2025 Preliminary choice Strand/Cable
58	MILESTONE	Decision Dipole/Quadrupole	New	08/26/2025	08/26/2025					08/26/2025 Decision Dipole/Quadrupole
52	PHASE	✓ EM Design Q0eF	New	08/27/2025	10/21/2025	40 days				08/27/2025 10/21/2025 EM Design Q0eF
59	TASK	Bucking Coil	New	08/27/2025	09/23/2025	20 days				08/27/2025 09/23/2025 Bucking Coil
60	TASK	Iron shield	New	09/24/2025	10/07/2025	10 days				09/24/2025 10/07/2025 Iron shield
61	TASK	Design Q0eF	New	10/08/2025	10/21/2025	10 days				10/08/2025 10/21/2025 Design Q0eF
64	PHASE	✓ Strucutral Analysis	New	10/22/2025	12/16/2025	40 days				10/22/2025 12/16/2025 Strucutral Analysis
65	TASK	Structural Analysis B0pF	New	10/22/2025	11/18/2025	20 days				10/22/2025 11/18/2025 Structural Analysis B0pF
66	TASK	Structural Analysis Q0eF	New	11/19/2025	12/16/2025	20 days				11/19/2025 12/16/2025 Structural Analysis Q0eF
69	PHASE	✓ Cryostat	New	12/17/2025	02/17/2026	45 days				12/17/2025 02/17/2026 Cryostat
70	TASK	Heat load calculations	New	12/17/2025	12/23/2025	5 days				12/17/2025 📕 12/23/2025 Heat load calculations
71	TASK	Support strap system	New	12/24/2025	12/30/2025	5 days				12/24/2025 🔳 12/30/2025 Support strap system
72	TASK	Thermal shields	New	12/31/2025	01/06/2026	5 days				12/31/2025 01/06/2026 Thermal shields
73	TASK	Heat intercepts	New	01/07/2026	01/13/2026	5 days				01/07/2026 • 01/13/2026 Heat intercepts
74	TASK	Supporting systems	New	01/14/2026	01/27/2026	10 days				01/14/2026 D1/27/2026 Supporting systems
75	TASK	Pressure vessel	New	01/28/2026	02/03/2026	5 days				01/28/2026 02/03/2026 Pressure vessel
76	TASK	CAD Model	New	02/04/2026	02/17/2026	10 days				02/04/2026 💻 02/17/2026 CAD Model
67	PHASE	✓ Documentation	New	02/18/2026	03/03/2026	10 days				02/18/2026 - 03/03/2026 Documentation
68	TASK	Documentation	New	02/18/2026	03/03/2026	10 days				02/18/2026 🔲 03/03/2026 Documentation

Open Issues/Questions

- Collaboration
 - EIC?
 - Engage students
- Construction
 - In-house/industrial
 - VPI process: MIT
- VPI impregnation
 - Insulated vs non
- Measurement equipment
 - No rotating coil setup
- What does it take to make a small demonstrator?
 - Fail fast, fail early
 - MIT has capability to turn around prototypes fast, all in-house (including testing)
- NbTi strand
 - Preliminary design based on 1.065mm dia strand

Magnet Technology at MIT - Expertise

- Magnet design expertise
- EIC IR expertise
- Cryo expertise
- Vacuum expertise
- Structural mechanics expertise
- Software
 - COMSOL
 - ANSYS
 - Opera
- PSFC
 - VPI soldering technique
 - Quench protection

Magnet Technology at MIT – Facilities/Equipment

- MIT Bates
 - ~80 acres of land
 - 100,000 square feet of office and lab space
 - 12 MW of power available
 - Power supplies
 - 2400A, 215kW PS
 - Bates HPRC
- PSFC
 - Fabrication and VPI solder capabilities
 - He Liquifier
 - New Linde 70L/h cryoplant
 - C.f. AUP magnet: needs 1000L (15000lbs)
 - Superconducting magnet test facility (50 kA, 10V)
- Various cryostats

Things to discuss

- Collaboration
- Scope
 - B0pF
 - Direct wind machine for larger cable?
 - Testing?
 - Q1ABpF? (tapered quads)
 - B0ApF?
- Strand/cable
- Next steps

Summary

- MIT: long experience in Magnet Technology
 - Francis Bitter Lab, PSFC
 - Peter Marston
 - Bruce Montgomery
 - 20T all HTS fusion magnet
- B0pF: challenging magnet, but MIT has the technology to make this work
 - VPI soldering technique
 - Larger cable to address quench issues
 - Integration with detectors
- Other opportunities?
- Bates and PSFC: experienced team, eager to get to work
 - Teams have a long history working together

Additional Slides

B0ApF

• Requirements:

- Aperture: 120mm (coil)
- Length: 0.6m (magnetic length)
- Field: 3.3T
- (c.f. HFDW: 80mm aperture, max. 3.1T)
- Same cable as B0pF
 - Hot spot <90K

Massachusetts Institute of Technology

Training Free CCT

