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Philosophy of neural network wavefunctions

Many-parameter ansatz for unbiased approximation of Sfftgﬂsnam N Y
any wavefunction, Pauli principle !
but network structure should reflect basic structure of [ get ]
ground states for efficiency and accuracy. 111
4 )
=>» Generative Al model: The networks learns to Deep
represent the electron correlations. e
=» Physics-informed: Pauli principle enforced. network
N /
P11

Minimal human bias Electron coordinates



Electron correlations from generalized orbitals

Describe how the state of each electron is backflow
affected by the state of all other electrons
b;(r) > ¢;(ri; {r,}) /j/)

Slater determinant of correlated orbitals /j
describes many-body wavefunction ?

‘P(rl, ...,TN) = C}St qu(ri; {T/l})

A

A particle moving in an electron
liquid distorts the motion of all
other particles along its way.

Feynman and Cohen (1956)



|s attention all you need to solve the
correlated electron problem?

Employ attention to learn correlations between electrons.

Hilbert space

Self-attention variational
quantum states

Ground states of all physical
Hamiltonians




How to construct
a neural network variational wavefunction



Representing a single-particle orbital ¢: R* - C



Representing a single-particle orbital ¢: R* - C
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Representing a single-particle orbital ¢: R* - C
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feature
embed: h® = WPOr



Representing a single-particle orbital ¢: R* - C

feature
embed: h® = W°r
transform: h'*1 = h! + tanh(W'h! + b%)



Representing a single-particle orbital ¢: R* - C

O w{ ht
O wlht

d(r) = wi ht + iwlht

feature
embed: h® = W°r
transform: h!*1 = h! + tanh(W'h! + b))

Universal approximation theorem
The family of neural networks lies dense in the function space.

Hornik, Stinchcombe, and White, Neural networks 2 (5) 359-366 (1989)



Neural network Hartree-Fock



Neural network Hartree-Fock

{ry, ..., Iy}

OWzT'—1hL .
7T ¢i(r) = wi i hi +iw] h}

J
O ngh% @

Slater determinant
Y(ry, .., ry) = dl_(]gt ¢i(r;)

SESEKSES

Universal approximation theorem
Because single-particle orbitals are densely approximated, so are Slater determinants.



Capturing correlations

¥Y(ry, ..., Iy) = z wy det (CID;‘(ri; {r/i}))
k

Slater determinants of generalized orbitals ®;(r;; {r/l})
with permutation equwarlant dependence on remamlng electrons

Qi(ri; {7 T} = @i {1y o })

Any antisymmetric function can be written as a Slater determinant
of generalized orbitals™

Pfau et al., Phys Rev. Research 2, 033429 (2020)



Permutation equivariant functions

Extend on Hartree-Fock:

Which functions f: R4*N — R% are permutation equivariant

in N — 1 arguments {h;}, nonlinear, and depend explicitly on h;?
f(h;;...,h;, ..., hy,..,hy ) =f(h;; ..., hy, ..., hy, ..., )




Permutation equivariant functions

Extend on Hartree-Fock:

Which functions f: R4*N — R% are permutation equivariant

in N — 1 arguments {h;}, nonlinear, and depend explicitly on h;?
f(h;;...,h;, ..., hy,..,hy ) =f(h;; ..., hy, ..., hy, ..., )

(hii thyi}) = ) o(hT W Wyhy) Wy,

J

o... hon-linear function



Capturing correlations with self-attention
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von Glehn et al., arXiv:2211.13672 (2022)
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Self-attention wavefunction ansatz

Y
1

Enforces

Pauli principle
l det "I

1t

[ projection ]

Is_ienarlrelzS article T T T Generates
gle-p correlated orbitals
features _ _ _ _ _ _ _T,, 1 T_ ______ i

| ]

! perceptron i
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! Pttt Ix L
| [ self-attention ] |

________________ 1
-T T T Learns correlations
between electrons

Electron coordinates



Optimizing the variational wavefunction
with variational Monte Carlo



Variational Monte Carlo

E Ansatz i E Monte Carlo |
2 Neural X |
3 _,[ Net }_’Lp ¥ v :
5 L :
8 f 5 [L[e]»VBLJ :
| L Weights 8 | | i




How to sample an unnormalized probability density P(R)

Metropolis algorithm. R./\

(i) Start walker at R. _ / \;(i%
(ii) Propose move to R’ with probability T(R « R'). !
(iii) Accept with probability f\b do [
N e T(R<R")P(R") Y, |
AR « R’) = Min (1, T(R’<—R)P(R)) 0 \
Record R’ if accepted, else record R. ), 7 ’(
(iv) Repeat at (ii). x R Q/ |
(v} —
\IDO/q /
=>Walker density n(R) proportional to P(R). 1 f
— —>




Estimating energy

For local Hamiltonian Hggpr = HgrSgp R/ A )
=~ o w(R)
(H) = deI‘P(R)sz dRY" (R)Hg ¥ (R) f\b F
2 1 “ 4
= v J AR [¥ 1R AW (R)] I x@\ N
1 _ )
(H) ~ —z E.(R) with E.(R) = ¥Y"1(R)HR¥(R) \ A
M \/ e
] S
Properties: ) YT
(i) P(E. (R)) approaches normal distribution o °
(i) In eigenstate HY = E,W: E;(R) = Ey,var(E;) =0 _ |- e =
. 1 ’ oo PS
(iii) l\}ll_r)rgo HZR E; (R) larger than ground state energy ; /e




Natural gradient descent

The steepest descent direction dw of cost function L(w)
minimizes £ (w + dw) for fixed infinitesimal distance ||[dw||* =€

where ||...|| is a distance measure of distributions ¥,,.
w2

Distance measure on Hilbert space: W1

lAWll? = 1= |(¥sqwlB? = D gi(Widwidw; + 0(dw?)
ij In practice:

Steepest descent direction: (i) Approximate curvature g~ (w)

(ii) Coarse-grain curvature
dw = Z—Ag‘l(w) VwL(w) g(w) - g(w) + 41

(iii) Use only |\, | for
curvature estimate
Equivalent to imaginary time-evolution. (iv) Stochastic gradient estimates



o Generallzqd Wigner crystal in

Results ) . e

Two-dimensional Coulomb gas g ; 4

Ith lodi tential M | '
with periodic potentia j % s

g Y

"a.-’"ﬁ

+V02costri gy :

Filling fraction: v = §

N
S .

Spin-polarized .

Geier, Nazaryan, Zaklama, and Fu (2025) Li et al., Nature 597, 650-654 (2021),
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Fermi liquid to generalized Wigner crystal transition




Benchmark with band-projected exact diagonalization

O lattice sites

-31.5 10 -57.5 5
(a) | 3 (b)
—31.7 1 l'l —58.0-
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27 10 -32.070(7) -31.35(2) -31.32443
27 D -59.127(9)

-58.01(3)

-57.80848



Scaling law

Number of parameters required until convergence

par

—— N=400xN?0
Parameter convergence defined
from variance during optimization
_ | —$— 6e
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|s attention all you need to solve the
correlated electron problem?

[ self-attention ]

Many-parameter neural network provides an ansatz C;)
without human bias, o e mciote
where correlations are described by self-attention, [ﬁ]
achieving quantitative accuracy. 711
[ projection ]

l;?na;lr;?panicle T T T Generates

Spontaneous symmetry breaking [1] N/ features ______ fufap _Sorrestedorbitals
! [ perceptron ] E

Topological order [2] N/ i Tt X L

______ o — — — — — |
T T T- Learns correlations
between electrons

[1] M. Geier, K. Nazaryan, T. Zaklama, and L. Fu, arXiv:2502.05383 (2025)
[2] Y. Teng, D. Dai, and L. Fu, arXiv:2412.00618 (2024)

Electron coordinates
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