Cluster Geometry and
Classification in FCC Vertex
Detector

Emmett Forrestel | Summer 2025
Brown University, CERN



FCCee Context & Motivation

e The Future Circular Collider (FCCee) is a
proposed high-luminosity e‘e” collider
operating at multiple energy stages, with the
Z-pole expected to deliver unprecedented
event statistics.

e The vertex detector must achieve exceptional
spatial resolution and fast readout—both aided
by suppression of beam-induced background. |

e This challenge is most acute in Layer 1 of the R
CLD (CLIC-Like Detector), where occupancies
are highest.

*Proposed FCC-ee pathways



Project Focus

e Focused on hit clusters — groups of pixel hits
deposited by a single Monte Carlo particle in
Layer 1 of the CLD vertex detector.

e The detector was discretized into 25 pm x 25 pym
bins, matching the Arcadia-MD?3 pixel pitch, to
reproduce the true readout granularity.

e This talk will follow my research path from:

1. Identifying discriminative cluster features
between signal and beam background.

2. Exploration of intermodule crosstalk.

Data preprocessing and classification

*CLD Cross Section

algorithm development.



Background vs. Signal
Feature Analysis



Cluster Metrics

e Six geometric and structural

descriptors were extracted from each

cluster:
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Cluster Multiplicity Comparison

Clusr[er Multielicity Colmparison| e ~100,000 clusters analyzed for
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Cos(®) vs. Energy Deposited

Energy Deposited [GeV]

_CosThetaVsEdep e Both signal and background and
ol e | _ signal show higher energy
oy deposits as |cos(®)[-> 1.
10-of e Signal follows a much stronger
| association with cos(®), whereas

104 background is more stochastic.
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Counts
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As |cos(®)]-> 1,

particles encounter
more material, and
background’s
higher prevalence
here, explains its
higher average

energy deposit.

Energy deposited vs. Cos(Q)
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Elongation vs. Cos(®)

Cos Theta Vs Elongation
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With clusters of three or more hits,
log(elongation) demonstrates a
strong correlation with cos(®).
Likely, lower energy clusters
remain less linear, even at high
theta, whereas higher energy
signal clusters track very linearly,

especially at high theta.



Z Extent vs. Cos(®)

_CosThetaVsZExtent e When plotting log(z_extent) (Z
' I ] difference between max and min z
in a cluster) against cos(®), signal

ool clusters follow a very strong

o § relationship.

ol e This relationship stands to be

further investigated, especially the

S 1 B double bands in signal plot.
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Intermodule Crosstalk
Possibilities and Implications
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Layers 1A and 1B

My suspicion was that the double
banded structure in Z Extent came

from different radial traversals

between clusters.
e When examining CLD structure a

mechanism for these differing

radii becomes apparent—we see
two readout layers.

The outer I refer to as, layer 1B, the
inner as layer 1A.

10



l

Closed Form Relationship

1B

1A

Az = Ar - | cot 6|

This double band relationship
comes directly from the geometry
of the innermost layers.

When exploring the geometry, the
double band structure arises from:
In(Az) = In(Ar) + In|cot(0)]

With two different Ar

measurements for each band.
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Cross LayerAz vs. Cos(0)
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The cause of this double band
relationship is hits being dispersed
over two layers, both categorized
as layer 1.

The upper band was created by a
cluster spanning 1A and 1B.

Lower band was populated by
clusters with hits merely in the

same layer.



Particle Gun

Cluster Multiplicity Layer 1A
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Particle Gun

Barycenter, Multiplicity 2

__Barycenter Xy Multiplicity2 e After restricting, my analysis to 1A, I

| plotted the barycenters of
multiplicity 2 clusters.

e Isupposed that signal clusters with

- nonzero Z Extent only occur in
background

‘muons ¢

module overlap regions.
e For background, however, they are

quite distributed, indicating some

curling and many hits from the
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Merging Module Overlaps



Particle Gun 14

Merged Cluster Multiplicity
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Conservative Module Level
Separation
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Conservative Separation Testing
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Seeking to separate Z->qq and
muons from beam background,
while preserving at least 99% of
signal clusters.

More conservative approach, only
considering module level readout on
layer 1A, thus no Az relationship.
Using gradient boosted decision tree
with input features including: cos(0),

edep, Az, etc.



Method °

Metric Value
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Grid search across hyper
parameters for XGBoost, settling
on: max depth = 8, learning rate =
0.1, positive weight = 0.5.

Swept TPR/FPR thresholds to
achieve > 99% signal retention
and maximal background
rejection.

Final TPR/FPR threshold 0.0762.



Final Conservative Classifier

True Positive Rate
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e Final decision rule becomes:
{ = 1[ P(signal | x) > 0.0762 ]

e Final classifier results in:

d.

b
C.
d.
e

Signal retention = 99.0%
Background rejection: 69.1%
ROC AUC: 09177

Accuracy: 84.0%

Precision (signal): 76.3%
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Optimistic Separation



Optimistic Separation Testing
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Considers possibility of crosstalk
between module pair on layers on 1A
and 1B.

With this crosstalk enabled: In(Az) =
In(Ar*|cot(®)|) available to classifier
(shown for muons & background).
Using gradient boosted decision tree
with input features including: cos(0),

edep, log(Az), etc.
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Method

Metric Value
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Threshold

Grid search across hyper
parameters for XGBoost, settling
on: max depth = 10, learning rate =
0.1, positive weight = 0.25.

Swept TPR/FPR thresholds to
achieve >99% signal retention
and maximal background
rejection.

Final TPR/FPR threshold 0.072.
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Final Optimistic Classifier

True Positive Rate
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e Decision rule becomes:
{§ = 1[ P(signal | x) > 0.072]

e Final classifier gives:

d.

b
C.
d
e

Signal retention = 99.0%
Background rejection: 91.0%
ROC AUC: 0.9965

Accuracy: 95.0%

Precision (signal): 92.0%
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Summary and Key Contributions

Explained the two-band structure in In(Az) vs cos 0 as a consequence of
module overlap geometry.

Designed an overlap-aware merging algorithm that restores geometric
consistency and removes artificial patterns.

Characterized muon and Z - qq clusters at the single-module level, reflecting
conservative readout assumptions.

Developed XGBoost-based classifiers under both conservative and optimistic

assumptions, achieving strong signal retention and background rejection.
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