
Guinea-Pig Dev Updates for IPC at FCC-ee

Christoph Paus, Jan Eysermans, Katie Kudela, Mariarosaria D'Alfonso Nov 7 2025

Simulation in Guinea-Pig

Guinea-Pig is based on finite-element calculation method (or particle-in-cell)

- Primary (Cartesian) grid defined to propagate the beams and calculate the electromagnetic (EM) fields in each cell
 - Routine to calculate IPC creation in each cell based on local EM fields
- Grid size depends on beam size and should be large enough in x to store the crossing angle
- Created particles are propagated through the grid under influence of the EM fields of the beams

Beam sizes (from latest lattice – see FSR)

$$-\sigma_{v} = 8837 \text{ nm}$$

-
$$\sigma_{\rm v}$$
 = 31 nm

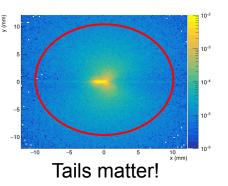
-
$$\sigma_{\rm z}$$
 = 12700 um

Window size → need to be rather large to contain the beams with large crossing angle

-
$$dx = 12*150*\sigma_v = 1.32555 \text{ mm}$$

-
$$dy = 12*60.0*\sigma_v = 0.00186 \text{ mm}$$

-
$$dz = 2.0^*\sigma_z$$
 = 25.4 mm


Issues with Guinea-Pig

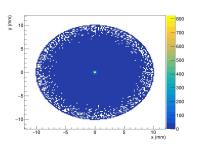
Issue #1: early created particles can be propagated outside of the beampipe

- The outer grid size is already outside the beampipe (~16x16mm)
- IPCs propagate in vacuum after
- Potential solutions
 - 1. Move final IPCs to IP ("VTX000")
 - Not ideal as particles can be created O(mm) away from IP, especially in z
 - Currently adopted as baseline sample and occupancy studies for FCC-ee → valid?
 - 2. Use GP kinematics at pair creation time and don't track the particles in the beam ("GRIDS0")
 - Effect of beam fields not taken into account
 - 3. Stop tracking of particles if a particle is outside of the grid ("GRIDSN", with N the desired grid)
 - Geant4 takes over the propagation of the IPCs outside the grid
 - Neglects electric fields of the beam outside of the grid (effect being studied, but considered small)

- Impact can be non-negligible for particles that have propagated large distances
- The VTX000 solution kind of mitigates it but correlations not taken into account
- Necessary to implement detector magnetic field and check the impact

Issues with Guinea-Pig

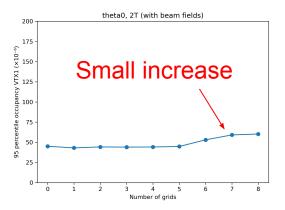
Issue #1: early created particles can be propagated outside of the beampipe

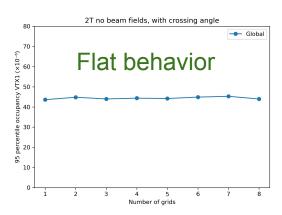

- The outer grid size is already outside the beampipe (~16x16mm)
- IPCs propagate in vacuum after
- Potential solutions
 - 1. Move final IPCs to IP ("VTX000")
 - Not ideal as particles can be created O(mm) away from IP, especially in z
 - Currently adopted as baseline sample and occupancy studies for FCC-ee → valid?
 - 2. Use GP kinematics at pair creation time and don't track the particles in the beam ("GRIDS0")
 - Effect of beam fields not taken into account
 - 3. Stop tracking of particles if a particle is outside of the grid ("GRIDSN", with N the desired grid)
 - Geant4 takes over the propagation of the IPCs outside the grid
 - Neglects electric fields of the beam outside of the grid (effect being studied, but considered small)

Issue #2: detector magnetic field is not taken into account

- Impact can be non-negligible for particles that have propagated large distances
- The VTX000 solution kind of mitigates it but correlations not taken into account
- Necessary to implement detector magnetic field and check the impact

FIX 1: Now stopped before beam pipe, and is an input parameter to GP.


Implementation of detector solenoid


Extended magnetic field propagator to take into account external solenoid field

- Constant solenoid magnetic field along z, magnitude in Tesla
- New input parameter to GP configuration

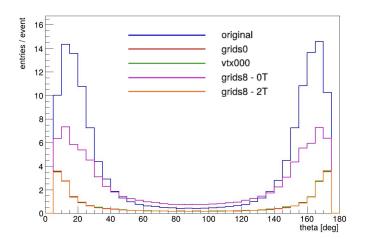
Extensive validation performed

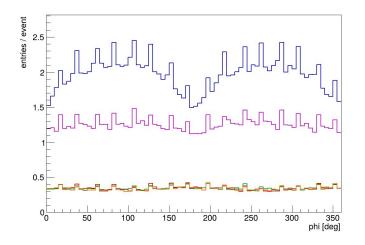
- Calculating Larmor radii and compare with analytic formulae
- Switching off beam EM fields to have pure solenoidal field (additional input parameter for debugging)
 - Compare with Geant4 by scanning each grid and calculate number of hits hitting the VTX → expect flat distribution
- Revealed small bug in current GP code that calculates the infinitesimal rotation angle
 - Impacts as well the beam magnetic field on the IPCs (but small effect, further being studied)
 - Equivalent of a lower absolute B field

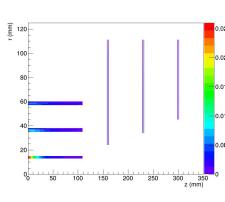
rid	dx (mm)	dy (mm)	area xy (mm²)		
	Production kinematics				
	2.7	0.004	0.01		
	5.3	0.007	0.04		
	5.3	0.07	0.35		
	5.3	0.6	3.15		
	5.3	5.3	28.11		
	10.6	10.6	112.45		
	15.9	15.9	253.02		

Inner beam pipe radius

\$PARAMETERS:: FCCee_Z				
{				
bfield_z=-2.0;				
<pre>beam_fields_on_pairs=0;</pre>				
beampipe r=10.0;				
_				
l .				


Final results


Shown the inner vertex layer 1 simhit distribution (CLD_o2_v07, 2T)


- θ distribution typically peaked in forward region
- ϕ structure due to beam field effects (little spikes due to overlapping VTX modules)

Comparison of different configurations

- ORIGINAL: largest number of IPCs as tails propagate without B-field beyond beam pipe
- VTX000: strong reduction as IPCs do propagate in B-field, curling and therefore lowering hits
- GRIDS0: take production kinematics, results in similar distribution as VTX000
- GRIDS8-0T: IPCs correctly stopped at beam pipe, but no B-field, less curl, therefore higher hit distribution
- GRIDS8–2T: IPCs correctly stopped at beam pipe with B-field, resulting in similar distribution as VTX000

Final results

Shown average number of hits on layer 1 (CLD_o2_v07, 2T)

- ORIGINAL: largest number of IPCs as tails propagate without B-field beyond beam pipe
- VTX000: strong reduction as IPCs do propagate in B-field, curling and therefore lowering hits
- GRIDS0: take production kinematics, results in similar distribution as VTX000
- GRIDS8–0T: IPCs correctly stopped at beam pipe, but no B-field, less curl, therefore higher hit distribution
- GRIDS8–2T: IPCs correctly stopped at beam pipe with B-field, resulting in similar distribution as VTX000

	Average number of hits
Original	141.9
Moved to IP (VTX000)	20.9
Production kinematics (GRIDS0)	20.2
Stopped at beampipe GRIDS8 + 0T in GP	88.6
Stopped at beampipe GRIDS8 + 2T in GP	20.7

Conclusion on the VTX000 approximation

VTX000 takes the particles at the end of the original simulation and moves them to the IP

- Takes into account the 2T solenoid
- Takes into account beam fields
 - Direction of the particle momenta not correct → can have impact locally
 - Correlation of beam fields with B field neglected → can have an impact at low fields

Approximation on VTX000 seems valid for the vertex barrel detector

Quasi identical shapes and occupancies when comparing with the fixed GP

However, possible local shape effects can become visible

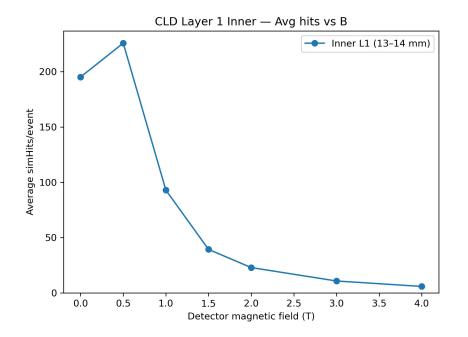
- Need to study this in entire phase space: endcaps, higher momentum tails
- Need to check also impact on radiative bhabha for lumical (very local effect)

Final large-statistic samples will be produced and effects can be studied on all sub detector elements

Conclusions

Improvements Guinea-Pig simulation

- Proper interface between GP and Geant4: stop the particle propagation at the inner beam pipe radius
- Implemented and validated detector magnetic field in GP
- Preliminary effects on occupancy studied in various configurations
- Check effects of modifications in the forward region (IPCs, also radiative Bhabha)
- List of improvements


Working together with the WarpX developers for a common definition of this interface and data formats

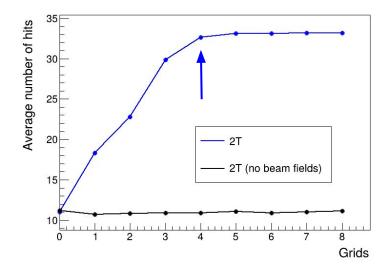
- Will further be used to benchmark both codes and further validation

Effect of detector magnetic field

Studied the magnitude of the magnetic field on the occupancy/hits on the first vertex layer

- High occupancy at 0T as IPCs don't curl
- Maximum occupancy in between 0–0.5T due to positive correlation with beam fields and detector acceptance effects
- Steep decrease of occupancy when increasing the field

Field (T)	Average number of hits	
0	195	
1	93	
2	23	
3	11	
4	6	


Effect of beam fields during tracking

IPCs are tracked in the primary and secondary grids under influence of the beam fields

- At large distance, the influence of the beam fields should vanish (net charge = 0)

To set a scale of this characteristic distance, plot the IPC occupancy/multiplicity on VTX at each grid step

- When grids starts to increase (0-4), IPCs gain energy due to the EM fields and the occupancy increases
- At larger grids (> 4), the effect vanishes and a constant/saturated occupancy is reached
- This typically correspond to a radius of around 5mm

dx (mm)	dy (mm)	area xy (mm²)
Production kinematics		
2.7	0.004	0.01
5.3	0.007	0.04
5.3	0.07	0.35
5.3	0.6	3.15
5.3	5.3	28.11
10.6	10.6	112.45
15.9	15.9	253.02
Inner beam pipe radius		
	Pro 2.7 5.3 5.3 5.3 5.3 10.6 15.9	Production kinemal 2.7