Detector concept inputs: CLD

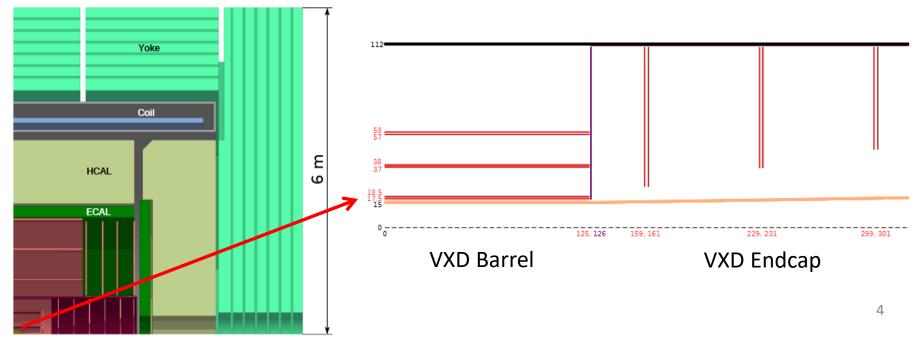
11/06/2025

The 1st FCC-ee TDAQ Workshop

A. Paramonov

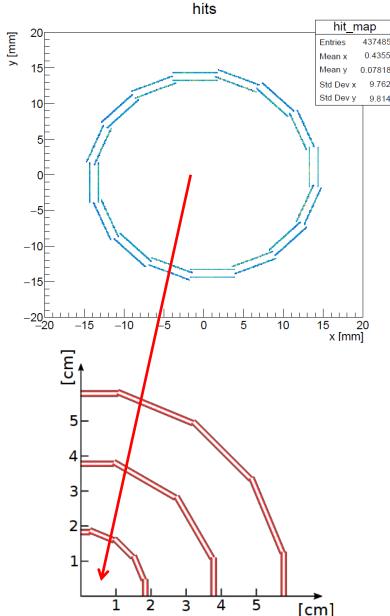
Many thanks to Jessy Daniel, Gaelle Boudoul, Jan Eysermans, Stefano Franchellucci, Tupendra Oli, and others

Requirements of the FCC-ee research program


- The FCC-ee experiments are aiming to measure a range of processes with extreme accuracy (low systematic uncertainties).
- Therefore, the TDAQ system can not contribute to the systematic uncertainty more than about 10⁻⁵.
- That's a major challenge for design of the TDAQ systems.
- Fixed-latency (aka "hardware") triggers may contribute to the systematic uncertainty. These uncertainties are definitely larger than 1e-5 for the LHC experiments.
- A trigger-less system (with data processing and filtering in an off-detector computer farm) may minimize the uncertainty on the trigger/filter efficiency.
- There is a great comparison of the TDAQ architectures in a recent talk from Christoph:
 - https://agenda.infn.it/event/47923/contributions/276355/attachments/141997/215087/triggerless.pdf
- Data losses of the DAQ system also contribute to the uncertainty.
 - Data losses due to the event size fluctuations need to be minimized and tracked
 - Data losses due to hardware failures should also be minimized and recorded.

Can we go triggerless?

- Fixed-latency hardware trigger is replaced with data processing and filtering with software.
- The giga-Z program requires full detector readout at 50 MHz. That's the most challenging regime in terms of data rate, but not event size.
 - The hard scatter rate is only ~200 kHz so there is a lot of room for off-detector filtering.
- 1. Is it technologically feasible to stream data from all the detector systems to commodity off-detector computing?
- 2. Is it affordable to process, filter, and store the data with the commodity computing?
- Please keep in mind that cost and performance of the off-detector

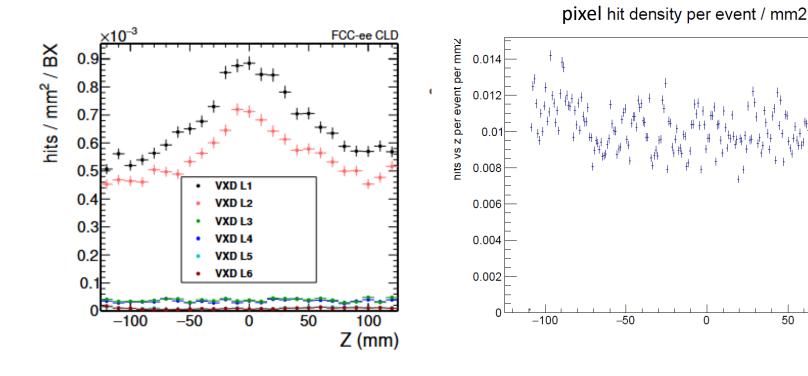

CLD refresher

- https://arxiv.org/abs/1911.12230
- CLIC-like detector = one of the detector concept for FCC-ee
- All-Silicon Vertex detector and Tracker in 2T magnetic field.
- Sampling calorimeters
- The beam backgrounds (incoherent pair production) are dominating the data rate from the 1st layer of the vertex detector. → Arguably the hardest to readout!

CLD simulations

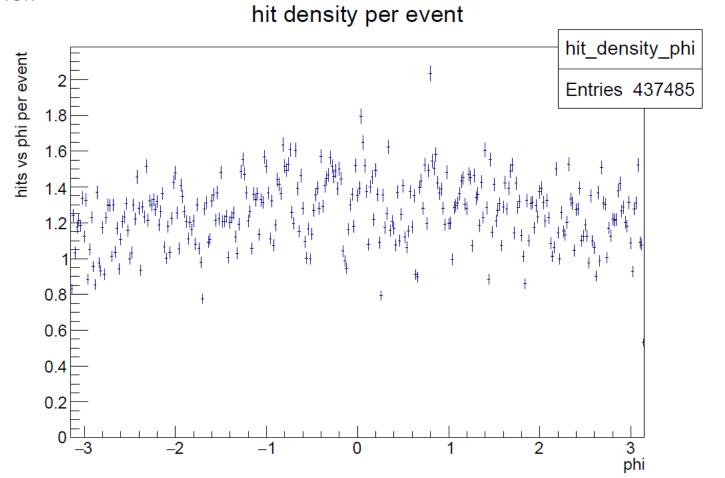
- Proper GEANT-4. ddsim
- The beam background samples are kindly provided by the MIT and UniGE team (thanks to Jan and Stefano).
- The Vertex Detector digitization is implemented by the Lyon team (thanks to Jessy Daniel, Gaelle Boudoul, and others).
- The simulation uses 25x25 um2 pixels.
- Somehow, the vertex detector dimensions are slightly different than the CLD paper.
- Please take my calculations with a grain of salt. I was careful but there may be bugs.

Hit densities per bunch crossing in VXD

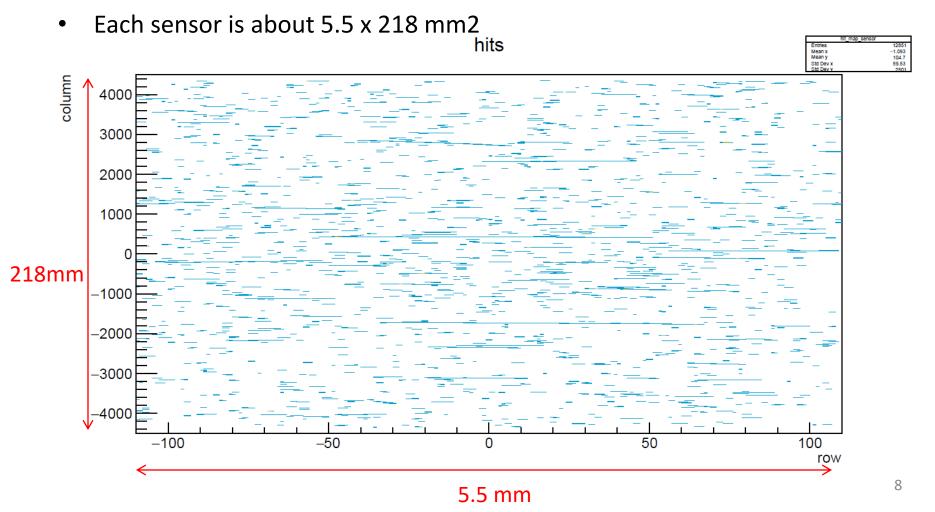

 Our L1 has smaller radius so the beam backgrounds (incoherent pairs) may produce slightly more hits.

hit density z

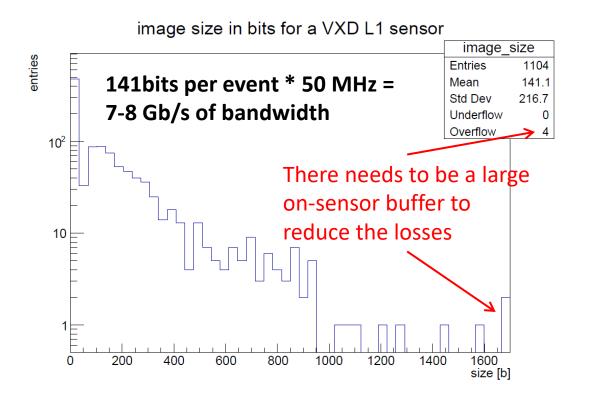
Entries 437485


100

- The CLD paper assumed 3 pixels per cluster. There was no digitization.
- My distributions are for pixels hit.
- My pixel hit rate is be about factor of 3 larger than that in the paper.


Hit densities per bunch crossing in VXD

- More or less flat in phi
- There are correlations because the individual pixel hits are next to each other.


Single-sensor image

- The clusters from the soft electrons seem to be long in phi.
- The 3 pixels per cluster assumption may not be accurate.

Bandwidth calculation for a sensor

- The sensor is segmented in 2x8 blocks of pixels. If there is a hit pixel in a block the sensor generates 34 bits of data (no ToTs). The 8-pixel side is along the phi direction. This is similar to the ITkPix readout.
- The data volume is calculated for each event each sensor separately.
- The on-sensor buffering needs to be calculated for the ttbar regime.

Bandwidth calculation for VXD L1

- Let's round the bandwidth per a 5.5x218 sensor to 10 Gb/s.
- There are 32 sensors (links) in the Layer-1. => The total bandwidth is 32Gb.
- That's not hard to handle event with contemporary technology; e.g. with
 1.5 of FLX155 cards
- The other layers will suffer less from the beam backgrounds and the total bandwidth will not be a challenge. The whole tracker can probably the handled by a handful of FPGA cards like FLX-155.
- In comparison, ATLAS ITk is to be readout by 100's of FLX-155 cards and the data is processed off-detector for larger bandwidth.

Outlook

- We are taking advantage of the latest simulations of the pixel digitization and beam backgrounds to explore the CLD readout.
- The L1 of VXD is one of the most challenging components to readout.
- Tentatively, the bandwidth per sensor (stave) does not look that bad (~10 Gb/s).
- We need to extend the calculations to the other components of the CLD detector.
- However, with the numbers above, the triggerless readout seems possible even with the contemporary TDAQ technology. It will be easier in 10-20 years.
- We need feedback from the sub-detector groups on accuracy of the simulations and technical feasibility of the data links.