
CMS Analyses using subMIT
Guillelmo Gomez-Ceballos (MIT)



2

Experimental (Collider) Particle Physics

Study of elementary particles and their interactions via collisions of particles
● Large Hadron Collider (LHC): proton-proton collider
● Compact Muon Solenoid (CMS): one of the multi-purpose experiments at LHC



3

Elementary Particles & Interaction Forces



4

Feynman Diagrams & Particle Collisions

Feynman diagrams vs. real particle collisions



5

Statistical Analyses
● Need to analyze a lot of (billions) data collisions and compare with the 

simulated predictions
○ Study the standard model (SM) of particle physics
○ Look for deviations within the SM
○ Directly look for particles or model beyond the SM

● It is not one data and one simulated samples, but many of them
○ Data samples split in time-intervals and years
○ Different simulated samples per physics process

● Several (usual) steps:
○ Online trigger decision: can not take all the data (neither useful nor 

manageable) → apply similar trigger algorithms to simulation
■ Rejected events gone, critically to make it right

○ Skimming: further reduction the sample size by applying some loose 
requirements →faster running time

○ Production of output information after a final selection: ``histograms”
○ Final analysis by comparing data and simulation



6

Some Distributions Using This Framework

Data (dots) compare with predictions (histograms) 



7

Data Analysis Flow
● CMS analyses targeting multilepton final states

○ Involving a large number of data and MC samples
○ ~60 independent samples X 5 data-taking eras ~ 300 in total
○ Several analyses involved different set of samples

● Purely RootDataFrame (RDF) and NanoAOD based
○ RDF: columnar analysis on ROOT
○ Needs: all within CMSSW (python / ROOT) - CMS Software specific + libraries
○ NanoAOD:

■ Relatively small (ROOT-based) samples commonly used in CMS
■ Making use of them out of the box without adding new branches

○ All other needed inputs obtained on-the-fly
■ MC weights, data corrections…

● Possible ``modus operandi”:
○ Run everything at once on a single interactive job using powerful machines 

(done for W boson mass-related analysis within subMIT)
○ Run interactively with small splitting
○ Parallel running with large splitting



8

Three Analysis Steps

● Skimming
○ Select events split by 1L, 2L, 3L, MET, γ (one input, five outputs)
○ Jobs submitted to condor on submit
○ Access input samples (worldwide) via xrootd, using global pool
○ Output files on /ceph/submit (potentially on /scratch too)

● Analysis jobs using input skimmed files
○ Common functions for building objects, systematics, weights…
○ RDF jobs running on slurm
○ Split individual samples in N (up to 10) batches

■ 60 X 5 X 4-10 ~ 1200-3000 jobs
■ Most of them run super fast
■ Having a reliable batch system is mandatory

● Studies
○ Merging output histograms/ntuples
○ Set of scripts for measurements, plotting...



9

Analysis Steps: Graphical Representation

All triggered 
data

1 lepton

2 leptons

>=3 leptons

Others

skimming

Skimming files

Parallel run

Merging 
information

Statistical 
analysis



10

Config Files

● Skimming with condor

● Analysis with slurm



11

An Example on Slurm

● Same-sign WW analysis
○ Using 2022-24 samples, 5 data-taking areas
○ Individual skimmed samples small

● 314 individual processes X 4 jobs per sample
○ 1256 jobs in total

● 90% of jobs finished within 20 min
○ ~100 slots available at a given time

● Only 4-6 jobs remained after 30 min



12

More Optimal?

● In principle, analysis steps could be done faster (?)
○ Given I am working on it on my spare (?) time, and a large number of 

parallel tasks→not critical
● Accessing files from /scratch faster than /ceph/submit?
● Too many vs. too few split jobs

○ Most samples run very fast →ending time completely dominated by a 
few jobs

○ Could decide splitting depending on the sample
■ Not an issue as long as enough slots are obtained at a given time

● As a ``back-up” option:
○ Running interactively possible if slurm does not work

■ Slower and unwanted option
■ Sometimes needed when slots are ``blocked” by other users



13

Summary

● Shown an analysis framework using subMIT
○ By no means this is maybe the most optimal approach, 

but it works
● A reliable computing system absolutely critical

○ Note there are several independent analyses which need 
to be run in parallel

○ One iteration for all analyses may involved ~6k slurm jobs
● Good performance overall speaking

○ Feedback and help from support have been great so far!


