Batch Job / Workflow Management:
SLURM & Snakemake

SubMIT Workshop
Jan 23, 2026

Alex Avdoshkin, Project Team

What I'll cover

Slurm Snakemake
® Login node vs compute nodes ® Snakefile basics: rules, inputs/
® Core commands: sinfo, outputs, wildcards

squeue, sbatch, srun/salloc, ® Workflow DAG

scancel ® Profile and Slurm

® Resource requests: time,
CPUs, memory (and GPUSs)

Find more info in
subMIT User'’s Guide:

submit.mit.edu/submit-
users-guide

Slurm in one slide

Functions

® Allocate (exclusive/non-exclusive) access to compute
resources

® Start/monitor work on allocated nodes cus
ier2/3

® Arbitrate contention via a queue + priority policies

. . SubMIT cluster
Architecture overview:

: ™ D
® slurmctld: controller (scheduler brain) ; HTCondor _[:
I J :

N (T

® slurmdbd: database daemon (bookkeeping)
® slurmd: daemon on each compute node (runs tasks)

L
(’
-

See subMIT Tutorial 2:
submit.mit.edu/submit-

users-guide/tutorials/
tutorial 2.html

Slurm vocabulary

Job life cycle

- N
Key concepts . .
® Partition: a set of nodes + scheduling rules ® Jobs have priority. It depends on user’s
use history
® Node: a machine providing CPUs/GPUs ® A job needs to fit with what’s available
to start
® Job: your request for resources + a script/ ® Small jobs can start early because of

command to run “backfill”

sinfo

squeue

squeue
-u SUSER

sacct

Info/queue:

partitions + node
avallability

what’s running/
pending

user'’s jobs only

job history

sbatch

SIrun

salloc

scancel

Slurm commands

Run/control:

submit a batch script

run a command

request i1nteractive
allocation

cancel a job

sbatch scripts

Example job.sbatch Call as

call as Ssbatch job.sbatch
1 #!/bin/bash
2 #SBATCH —job-name=train
3 #SBATCH --partition=submit
4 #SBATCH --time=02:00:00 Run an array
5 #SBATCH --cpus-per-task=8
6 #SBATCH --mem=16G
7 #SBATCH --output=Ilogs/out

8 #SBATCH --error=logs/err $sbatch —array=0-99 job.sbatch
9

11 module load your_toolchain

12 Managing dependencies

13 input=data/sample.fq.gz
14 output=results/sample.bam

15
16 echo "Running on $(hostname)" jid1=%(sbatch --parsable jobA.sbatch)
17 my_aligner -t $SLURM_CPUS_PER_TASK -i $input -0 $output jid2=$(sbatch --parsable

—dependency=afterok:$jid1 jobB.sbatch)
sbatch --dependency=afterok:$jid2 jobC.sbatch

Requesting resources

What you usually specify

--time=HH:MM:SS (wall time)
--cpus-per-task=N (threads)
--mem=16G or --mem-per-cpu=2G
--partition=...

—gres=gpu:1

Partitions

® submit
® submit-gpu

® submit-gpu-express

~2000 CPUs and ~60 GPUs

Constraints

—-—constraint-=..

request nodes with a
feature, e.g. nvidia a30,
100gbs,

Use sinfo -o "%N %$f” to see
the full list

Our nodes (even within 1in
partitions) are
heterogenues, differing in
the numbers of cores,
memory, types of GPUs

Snakemake

You specify results -> Snakemake figures out the steps

assembly assembly assembly assembly
sample: 102 sample: 104 sample: 101 sample: 103

same outputs compose_merge
Incremental builds: only rerun what’s missing or
outdated

Parallelism: run independent rules concurrently

Benefits
® Reproducibility: same commands, same inputs —

merge_assemblies

Portability: local laptop — Slurm cluster with
minimal changes iffexs

compare_assemblies

all

See subMIT Tutorial 7:
submit.mit.edu/submit-

users—-quide/tutorials/
tutorial 7.html

Snakemake builds a DAG of jobs.
Wildcards (like {sample}) fan out parallel work.

https://submit.mit.edu/submit-users-guide/tutorials/tutorial_7.html
https://submit.mit.edu/submit-users-guide/tutorials/tutorial_7.html

Snakefile

Wildcards, rules and all

Snakefile example
Mental model

1 configfile: “config.yam|"

2
3 SAMPLES = config[“samples"] ® Rules are templates; wildcards match filenames
4 o .) : :
rule all defines the targets you want built
5 rule all: ° .
6 input: Snakemake runs rules only when outputs are missing/outdated
7 expand("results{sample}.count", sample=SAMPLES)
8
9 rule count_lines:
10 Input:
11 "data/{sample}.txt"
12 output:
13 "results/{sample}.count”

14 threads: 1

15 resources:

16 mem_mb=200

17 shell:

18 "wc -l {input} > {output}"

Running Snakmake

Run profile file

./slurm_simple/config.yml

$ snakemake --cores <number of cores> cluster:
mkdir -p slurm_logs/rule} &&
sbatch
--partition={resources.partition}
: oty) (e (st (st --job-name=smk-{rule}-\wildcards}
BUlld DAG --output=slurm_logs/rule}/{rule}-{wildcards}-%,j.out

--error=slurm_logs/Krule}/rule}-{wildcards}-%;.err
--time={resources.time}
$ snakemake --dag | dot -Tpng > dag.png S --account=<your submit username>
- --mem={resources.mem_mb}
default-resources:
dffexp | | compare_assemblies - partition=submit
- time="48:00:00"
. al - mem_mb=2000
Run Wlth prOﬁle restart-times: 1
max-status-checks-per-second: 1
latency-wait: 3600
jobs: 5000
$ snakemake --profile ./slurm_simple keep-going: True
rerun-incomplete: True
printshellcmds: True
use-conda: True

compose_merge

