
Alex Avdoshkin, Project Team

Batch Job / Workflow Management:
SLURM & Snakemake

SubMIT Workshop
Jan 23, 2026

What I’ll cover

Slurm

•Login node vs compute nodes

•Core commands: sinfo,

squeue, sbatch, srun/salloc,
scancel

•Resource requests: time,
CPUs, memory (and GPUs)

Snakemake

•Snakefile basics: rules, inputs/
outputs, wildcards

•Workflow DAG

•Profile and Slurm

Find more info in
subMIT User’s Guide:
submit.mit.edu/submit-
users-guide

Slurm in one slide
Functions •Allocate (exclusive/non-exclusive) access to compute

resources

•Start/monitor work on allocated nodes

•Arbitrate contention via a queue + priority policies

Architecture overview: •slurmctld: controller (scheduler brain)

•slurmdbd: database daemon (bookkeeping)

•slurmd: daemon on each compute node (runs tasks)

See subMIT Tutorial 2:
submit.mit.edu/submit-
users-guide/tutorials/
tutorial_2.html

Slurm vocabulary

Key concepts

•Partition: a set of nodes + scheduling rules

•Node: a machine providing CPUs/GPUs

•Job: your request for resources + a script/
command to run

Typical job lifecycle

PENDING RUNNING

Job life cycle

COMPLETED

•Jobs have priority. It depends on user’s
use history

•A job needs to fit with what’s available
to start

•Small jobs can start early because of
“backfill”

Slurm commands
Info/queue: Run/control:

sinfo

squeue

squeue
-u $USER

partitions + node
availability

what’s running/
pending

user’s jobs only

sacct job history

sbatch submit a batch script

srun run a command

salloc request interactive
allocation

scancel cancel a job

sbatch scripts
Example job.sbatch

 1 #!/bin/bash
 2 #SBATCH —job-name=train
 3 #SBATCH --partition=submit
 4 #SBATCH --time=02:00:00
 5 #SBATCH --cpus-per-task=8
 6 #SBATCH --mem=16G
 7 #SBATCH --output=logs/out
 8 #SBATCH --error=logs/err
 9
11 module load your_toolchain
12
13 input=data/sample.fq.gz
14 output=results/sample.bam
15
16 echo "Running on $(hostname)"
17 my_aligner -t $SLURM_CPUS_PER_TASK -i $input -o $output

call as $sbatch job.sbatch

$sbatch —array=0-99 job.sbatch

jid1=$(sbatch --parsable jobA.sbatch)
jid2=$(sbatch --parsable
—dependency=afterok:$jid1 jobB.sbatch)
sbatch --dependency=afterok:$jid2 jobC.sbatch

Managing dependencies

Call as

Run an array

Requesting resources
What you usually specify

• --time=HH:MM:SS (wall time)

• --cpus-per-task=N (threads)

• --mem=16G or --mem-per-cpu=2G

• --partition=...

• —gres=gpu:1

Partitions

• submit

• submit-gpu

• submit-gpu-express

Our nodes (even within in
partitions) are
heterogenues, differing in
the numbers of cores,
memory, types of GPUs

Constraints

--constraint=…
request nodes with a
feature, e.g. nvidia_a30,
100gbs, …
Use sinfo -o "%N %f” to see
the full list

~2000 CPUs and ~60 GPUs

Snakemake

Benefits
• Reproducibility: same commands, same inputs →

same outputs
• Incremental builds: only rerun what’s missing or

outdated
• Parallelism: run independent rules concurrently
• Portability: local laptop → Slurm cluster with

minimal changes

You specify results -> Snakemake figures out the steps

See subMIT Tutorial 7:
submit.mit.edu/submit-
users-guide/tutorials/
tutorial_7.html

Snakemake builds a DAG of jobs.

Wildcards (like {sample}) fan out parallel work.

https://submit.mit.edu/submit-users-guide/tutorials/tutorial_7.html
https://submit.mit.edu/submit-users-guide/tutorials/tutorial_7.html

Snakefile
Wildcards, rules and all

 1 configfile: “config.yaml"
 2
 3 SAMPLES = config[“samples"]
 4
 5 rule all:
 6 input:
 7 expand("results/{sample}.count", sample=SAMPLES)
 8
 9 rule count_lines:
 10 input:
 11 "data/{sample}.txt"
 12 output:
 13 "results/{sample}.count"
 14 threads: 1
 15 resources:
 16 mem_mb=200
 17 shell:
 18 "wc -l {input} > {output}"

• Rules are templates; wildcards match filenames
• `rule all` defines the targets you want built
• Snakemake runs rules only when outputs are missing/outdated

Mental model

Best practice: parameterize paths + options in a
config.yaml, keep Snakefile logic clean.

Snakefile example

Running Snakmake

$ snakemake --cores <number of cores>
./slurm_simple/config.yml
cluster:
 mkdir -p slurm_logs/{rule} &&
 sbatch
 --partition={resources.partition}
 --job-name=smk-{rule}-{wildcards}
 --output=slurm_logs/{rule}/{rule}-{wildcards}-%j.out
 --error=slurm_logs/{rule}/{rule}-{wildcards}-%j.err
 --time={resources.time}
 --account=<your submit username>
 --mem={resources.mem_mb}
default-resources:
 - partition=submit
 - time="48:00:00"
 - mem_mb=2000
restart-times: 1
max-status-checks-per-second: 1
latency-wait: 3600
jobs: 5000
keep-going: True
rerun-incomplete: True
printshellcmds: True
use-conda: True

$ snakemake --dag | dot -Tpng > dag.png

Run

Build DAG

profile file

$ snakemake --profile ./slurm_simple

Run with profile

