Magnet Design Discussion, 26 October, 2021

Jan Bernauer, Jim Kelsey, Chris Vidal, and Douglas Hasell

Magnet for 2022 tests

- use existing magnet from Charles Epstein's experiment
 - 280 mm bend radius, 1.65 kG, suitable for up to 13.3 ${\rm MeV}/c$ leptons
 - mechanical design exists, pass this on to Jan and Xiaqing
 - calculate field map, simulate in GEANT4, ray traces
 - determine acceptance and rates
- using target ladder and scattering chamber currently at TRIUMF
 - modify flange at 45° to connect to this magnet
 - will likely need to position $\sim 750~{\rm mm}$ from target
 - will need new stand to support magnet.
- focal plane detector needs to be designed and made

Magnet Design Discussion, 26 October, 2021

Magnets for real experiment

- ask Harald Merkel to design suitable magnets for 30-50 MeV beams
 - nominally 300 mm bend radius, 3.2 kG, up to 30 ${\rm MeV}/c$ leptons
 - provide mechanical design, pass to Jan and Xiaqing
 - calculate field map, simulate in GEANT4, ray traces
 - determine acceptance and rates
 - optimize design as needed
- use existing target ladder
- design and build new scattering chamber
 - adjustable magnet position
 - 15° 25° on one side
 - 23° 33° on other side
 - 2 inch beamline at TRIUMF limits magnet position \Rightarrow smaller ?
 - new stand to support magnets and shielding
- focal plane detectors need to be designed and made