Multi-messenger Astronomy (MMA) in the 3G era

Gravitational Waves -Listening to the Universe

PAX 8, Aug 3, 2022

Electromagnetic -Eyes of the Universe

neutrino- Flavor of the Universe

Multi-messenger Astronomy (MMA) in the 3G era

Chairs: Ashley Villar (Penn State) & Poonam Chandra (NRAO)

Kenta Hotikezaka (U Tokyo) PAX 8, Aug 3, 2022

Alessandra Corsi (Texas Tech) Charlie Kilpatrick

(Northwestern)

Diversity in neutron star mergers

- EM signals depend on the channel.
- The unknown EOS determines the threshold masses.

Shibata & KH 19

3G detectors can see this phase for nearby events.

What we learned from GW170817

- Delay & Duration ~ O(1sec).
- $E_{rad} \sim 10^{47}$ erg << short GRBs by 3 orders magnitude.

- Evolving fast (~days).

- Quasi-thermal, Blue -> Red with time.

• $E_{rad} \sim 10^{47}$ erg << supernovae by a few orders magnitude.

- Peak ~ 150 day.
- E_{rad}~10⁴⁷ erg << cosmological GRB afterglows by 3 orders.
- A single power-law spectrum from radio to X-ray.

GW170817: GRB

- Delay & Duration ~ O(1sec).
- E_{rad}~10⁴⁷ erg << short GRBs by 3 orders magnitude.

Cocoon shock breakout

The γ -ray pulse is likely produced by mildly relativistic shock: a cocoon breaks out from fast material (~0.8c) or jet's structure which is unrelated the cocoon-jet interaction.

- What is the origin of the γ-rays?
- What determines the delay of jet launch?
- Are there any prompt emission in other wavelengths?
- Does really the fast component exist?

GW170817: Kilonova

- Evolving fast (~days).
- $E_{rad} \sim 10^{47}$ erg << supernovae by a few orders magnitude.
- Quasi-thermal, Blue -> Red with time.

Kasen+2017

A kilonova is produced by non-relativistic ejecta through radioactivity of r-process nuclei.

- What is the origin of "blue" & "red"? (alternatively, the increase of opacity in time)
- What is the viewing angle dependence?
- Can we spectroscopically identify atoms? JWST?
- What is the energy source? α , β , γ , fission.
- We are (will be) facing atomic data problems.

Looking forward to JWST

KH + in prep.

JWST Follow up of kilonovae

There is no detailed information about the spectral energy distributions of kilonovae beyond ~2 microns. Are we even seeing most of the emission?

JWST - r-process abundances

Abundances can be constrained through constraints on late-time heating and through direct detection of species in IR spectra

GW170817 in different θ_v and environment

- Delay & Duration $\sim O(1sec)$.
- $E_{rad} \sim 10^{47}$ erg << short GRBs by 3 orders magnitude.

Much brighter if on-axis.

Cosmological events

• Evolving fast (~days). • $E_{rad} \sim 10^{\overline{47}} \text{ erg} < supernovae by a$ few orders magnitude.

Cannot be very different.

- Peak ~ 150 day.
- E_{rad}~10⁴⁷ erg << cosmological GRB afterglows by 3 orders.

Much brighter if on-axis and dense ISM.

Cosmological events

Next 5-10 years - Afterglows (assuming kilonovae allow for localization)

	Run	BNS	NSBH	BBH	
	Median 90% credible area (deg ²)				
	05	$1250\substack{+120 \\ -120}$	$1076\substack{+65 \\ -75}$	$230.3^{+7.8}_{-6.4}$	(vľm)
	Median luminosity distance (Mpc)				
	05	$620\substack{+16 \\ -17}$	$1132\substack{+19\\-23}$	$2748\substack{+30 \\ -34}$	x Den
_	Annual number of detections				Flu
	05	$190\substack{+410 \\ -130}$	$360\substack{+360 \\ -180}$	$480\substack{+280 \\ -180}$	
	$E_{\rm ej} =$	10^{53} erg, $\varepsilon_{\rm B} = 0$	0.01 GRB 200	0522A z=0.554 (3.2Gpc)	E
10000 1000 1000 100 100 10 1			$M_{\rm ej} = 0.01 M_{\odot}$ 0.03 0.1	$I0 \qquad 10 \qquad I \qquad $	1NS
	Obse	rver time : <i>t</i>	[yr] Bruni et al.	2021, MNRAS, L41-L45	O

Flux density : F_{ν} [μ Jy]

Beasley et al. Astro2020 White Paper; Corsi et al. Astro2020 White Paper

Fully probing the diversity of nonthermal afterglows of GW mergers (independently of kilonovae) requires the combination of the exquisite localization capabilities of 3G detectors (for nearby off-axis jets) and arcminlocalization capabilities in gamma-rays (for small viewing-angle events up to SF peak).

Next 5-10 years - kilonovae (finding the needle in a haystack)

Margutti Astro2020 white paper

Rubin and Roman provide the best deep, wide-field search capabilities for kilonovae in the optical and infrared - we still need rapid vetting, follow up (ELT spectroscopy). Good localization is still key!

MMA over the next decade and beyond

Given these capabilities, how can GW and EM facilities better coordinate to maximize science being done as part of multi-messenger astronomy?

3G era

MMA science absolutely CANNOT be done without NG detectors?

- GW-EM x cosmology
 - What precision can MMA achieve? Worry about systematic errors?
 - Beyond H0?
 - New tests of general relativity with MMA?

• GW-EM x cosmological transients

- Will MMA solve the diversity in GRBs? Short vs long, extended emission, flare etc.
- Cosmic star formation history?
- A new type of extreme transient?
- What EM facilities are needed to match the capabilities of NG detectors at high redshift?

GW-EM for nearby objects

- Precursors and post-merger GW signals
- More nearby events \rightarrow searches for kilonova afterglows (EoS)

• Core collapse supernovae, magnetar flares, pulsars, X-ray binaries, accretion induced collapse • What observations are needed to improve models for waveforms observed in NG detectors?

3G era Multi-messenger: GW x EM x v

- any GRBs.
- from EM will be the most useful?
- High energy v and space GW from TDEs?

 IceCube gen-2 is very interesting. But we probably need a nearby onaxis jet given the fact that we haven't seen high energy neutrinos from

If high energy neutrinos from a merger are detected, what information