

♠HOME ABOUT RESEARCH NEWS EVENTS OUTREACH GET INVOLVED INSIDE NMC CAREERS

NMC NEWS

TMD Collaboration Winter School January 20-26, 2022 Santa Fe, New Mexico

Introduction to QCD

- Lec. 1: Fundamentals of QCD
- Lec. 2: QCD for cross sections with identified hadrons, & hadron structure
- Lec. 3: QCD for observables with polarization, & role/power of lattice QCD

Renaud Boussarie Matthias Burkardt Martha Constantinou William Detmold Markus Ebert Michael Engelhardt Sean Fleming Leonard Gamberg Xiangdong Ji Zhong-Bo Kang Christopher Lee Keh-Fei Liu Simonetta Liuti Thomas Mehen Andreas Metz John Negele Daniel Pitonyak Alexei Prokudin Jian-Wei Qiu Abha Rajan Marc Schlegel Phiala Shanahan Peter Schweitzer lain W. Stewart Andrey Tarasov Raju Venugopalan Ivan Vitev Feng Yuan Yong Zhao

Jianwei Qiu

TMD Collaboration

A modern introduction to the physics of Transverse Momentum Dependent distributions

TMD Handbook

The harder question

Question:

How to test QCD in a reaction with identified hadron(s)? – to probe the quark-gluon structure of the hadron

Gartheright Facts:

Hadronic scale ~ 1/fm ~ Λ_{QCD} is non-perturbative

Cross section involving identified hadron(s) is not IR safe and is NOT perturbatively calculable!

Solution – Factorization – Approximation:

 \diamond Isolate the calculable dynamics of quarks and gluons

Connect quarks and gluons to hadrons via non-perturbative but universal distribution functions

- provide information on the partonic structure of the hadron

Consider a cross section:

ollaboration

$$\sigma(Q^2, m^2) = \sigma_0 \left[1 + \alpha_s I(Q^2, m^2) + \mathcal{O}(\alpha_s^2) \right]$$

Leading order quantum correction:

$$I(Q^2, m^2) = \int_0^\infty dk^2 \, \frac{1}{k^2 + m^2} \, \frac{Q^2}{Q^2 + k^2}$$

 \Box Leading power contribution in O(m²/Q²):

$$I(Q^2, m^2) = \int_{k^2 \ll Q^2} dk^2 \, \frac{1}{k^2 + m^2} + \int_{k^2 \sim Q^2} dk^2 \, \frac{1}{k^2} \, \frac{Q^2}{Q^2 + k^2} + \mathcal{O}\left(\frac{m^2}{Q^2}\right)$$

Leading power contribution to the cross section:

$$\begin{split} \sigma(Q^2, m^2) &= \left[1 + \alpha_s \int_{k^2 \ll Q^2} dk^2 \, \frac{1}{k^2 + m^2}\right] \left[1 + \alpha_s \int_{k^2 \sim Q^2} dk^2 \, \frac{1}{k^2} \, \frac{Q^2}{Q^2 + k^2}\right] \\ &+ \mathcal{O}(\alpha_s^2) + \mathcal{O}\left(\frac{m^2}{Q^2}\right) \\ &\equiv \phi \otimes \hat{\sigma} + \mathcal{O}(\alpha_s^2) + \mathcal{O}\left(\frac{m^2}{Q^2}\right) \\ & \blacksquare \text{ Long-distance distribution } & \texttt{Short-distance hard part} \end{split}$$

Observables with ONE identified hadron

Observables with ONE identified hadron

Creation of an identified hadron:

Not necessary to be dominated by one parton, which is always virtual!

On-shell approximation:

Collaboration

- in a "cut-diagram" notation

Non-perturbative!

$$\sigma_{e^+e^- \to h(p)X} \approx \sum_{f} \int \frac{d^4k}{(2\pi)^4} \mathcal{H}_{e^+e^- \to f(k)}(Q,k;\sqrt{S}) \mathcal{F}_{f(k) \to h(p)X}(k,p;\Lambda_{\rm QCD}) + \dots$$

$$\begin{array}{l} \text{On-shell} \\ \widehat{k}^2 \equiv 0 \end{array} \approx \sum_{f} \int \frac{d^4k}{(2\pi)^4} \mathcal{H}_{e^+e^- \to f(k)}(Q,\widehat{k};\sqrt{S}) \mathcal{F}_{f(k) \to h(p)X}(k,p;\Lambda_{\rm QCD}) + \mathcal{O}(Q^2) + \dots \\ 1 = \int dz \, \delta(z - \frac{p^+}{k^+}) \approx \sum_{f} \int dz \, \mathcal{H}_{e^+e^- \to f(k)}(Q,\frac{p}{z};\sqrt{S}) \int \frac{d^4k}{(2\pi)^4} \delta(z - \frac{p \cdot n}{k \cdot n}) \mathcal{F}_{f(k) \to h(p)X}(k,p;\Lambda_{\rm QCD}) + \dots \\ \approx \sum_{f} \int dz \, \widehat{\sigma}_{e^+e^- \to f(k)}(Q,z;\sqrt{S}) D_{f(k) \to h(p)X}(z,p;\Lambda_{\rm QCD}) + \dots \\ \end{array}$$

$$\begin{array}{l} \text{Hard collision to produce an} \\ \text{on-shell parton} \\ - \text{Perturbatively calculable!} \end{array}$$

Observables with identified hadron(s)

ollaboration

Inclusive lepton-hadron DIS – one hadron

DIS cross section is infrared divergent, and nonperturbative!

QCD factorization (approximation!)

Scattering amplitude:

$$M(\lambda, \lambda'; \sigma, q) = \overline{u}_{\lambda'}(k') \left[-ie\gamma_{\mu} \right] u_{\lambda}(k)$$

$$\star \left(\frac{i}{q^{2}} \right) \left(-g^{\mu\mu'} \right)$$

$$\star \langle X | eJ_{\mu'}^{em}(0) | p, \sigma \rangle$$

Cross section:

$$d\sigma^{\text{DIS}} = \frac{1}{2s} \left(\frac{1}{2}\right)^{2} \sum_{X} \sum_{\lambda,\lambda',\sigma} \left| \mathsf{M}(\lambda,\lambda';\sigma,q) \right|^{2} \left[\prod_{i=1}^{X} \frac{d^{3}l_{i}}{(2\pi)^{3} 2E_{i}} \right] \frac{d^{3}k'}{(2\pi)^{3} 2E'} (2\pi)^{4} \delta^{4} \left(\sum_{i=1}^{X} l_{i} + k' - p - k \right)$$
$$E' \frac{d\sigma^{\text{DIS}}}{d^{3}k'} = \frac{1}{2s} \left(\frac{1}{Q^{2}}\right)^{2} L^{\mu\nu}(k,k') W_{\mu\nu}(q,p)$$

Leptonic tensor:

- known from QED: $L^{\mu\nu}(k,k') = \frac{e^2}{2\pi^2} \left(k^{\mu}k'^{\nu} + k^{\nu}k'^{\mu} - k \cdot k'g^{\mu\nu} \right)$

Hadronic tensor:

$$W_{\mu\nu}(q,p,\mathbf{S}) = \frac{1}{4\pi} \int d^4 z \, \mathrm{e}^{iq \cdot z} \, \left\langle p, \mathbf{S} \left| J^{\dagger}_{\mu}(z) J_{\nu}(0) \right| p, \mathbf{S} \right\rangle$$

Symmetries:

♦ Parity invariance (EM current)
 ♦ Time-reversal invariance
 ♦ Current conservation
 W_{µν} = W_{µν} = W^{*}_{µν} real
 Q^µW_{µν} = Q^vW_{µν} = 0

□ Structure functions – infrared sensitive:

$$F_1(x_B, Q^2), F_2(x_B, Q^2), g_1(x_B, Q^2), g_2(x_B, Q^2)$$

No QCD parton dynamics used in above derivation!

G Feynman diagram representation of the hadronic tensor:

Perturbative pinched poles:

$$\int d^4k \, \mathrm{H}(Q,k) \left(\frac{1}{k^2 + i\varepsilon}\right) \left(\frac{1}{k^2 - i\varepsilon}\right) \mathrm{T}(k,\frac{1}{r_0}) \Rightarrow \infty \text{ perturbatively}$$

 $\xrightarrow{\mathbf{x}+i\epsilon} \\ \xrightarrow{\mathbf{x}-i\epsilon} \operatorname{Re}(k^2)$

 $\operatorname{Im}(k^2)$

Perturbative factorization:

Light-cone coordinate:

$$k^{\mu} = xp^{\mu} + \frac{k^{2} + k_{T}^{2}}{2xp \cdot n}n^{\mu} + k_{T}^{\mu}$$

$$v^{\mu} = (v^{+}, v^{-}, v^{\perp}), v^{\pm} = \frac{1}{\sqrt{2}}(v^{0} \pm v^{3})$$

$$\int \frac{dx}{x}d^{2}k_{T} \operatorname{H}(Q, k^{2} = 0) \int dk^{2} \left(\frac{1}{k^{2} + i\varepsilon}\right) \left(\frac{1}{k^{2} - i\varepsilon}\right) \operatorname{T}(k, \frac{1}{r_{0}}) + \mathcal{O}\left(\frac{\langle k^{2} \rangle}{Q^{2}}\right)$$

$$\mathsf{Short-distance}$$

$$\mathsf{Nonperturbative matrix element}$$

Collinear factorization – further approximation

DFs as matrix elements of two parton fields – twist 2 operators:

– combine the amplitude & its complex-conjugate

$$\phi_{q/h}(x,\mu^2) = \int \frac{p^+ dy^-}{2\pi} e^{ixp^+y^-} \langle h(p) | \bar{\psi}_q(0) \frac{\gamma^+}{2p^+} \psi_q(y^-) | h(p) \rangle$$

Note:

 $\phi_{q/h} = f_{q/h}$ in Handbook

 $|h(p)\rangle$ can be a hadron, or a nucleus, or a parton state! Twist = Dim. of the operator – its spin

But, it is NOT gauge invariant!

$$\psi(x) \to e^{i\alpha_a(x)t_a}\psi(x) \qquad \bar{\psi}(x) \to \bar{\psi}(x)e^{-i\alpha_a(x)t_a}$$

– need a gauge link:

$$\phi_{q/h}(x,\mu^2) = \int \frac{dy^-}{2\pi} e^{ixp^+y^-} \langle h(p) | \bar{\psi}_q(0) \left[\mathcal{P}e^{-ig \int_0^{y^-} d\eta^- A^+(\eta^-)} \right] \frac{\gamma^+}{2p^+} \psi_q(y^-) | h(p) \rangle \, \mathcal{Z}_{\mathcal{O}}(\mu^2)$$

– corresponding diagram in momentum space:

Universality – process independence – predictive power

Gauge link – 1st order in coupling "g"

Longitudinal gluon: $q \sum_{j=1}^{\gamma*}$ $\overrightarrow{\gamma}^{*} \overrightarrow{\gamma}_{q}$ $q \sum_{i=1}^{\gamma_{i}}$ $\gamma^* = q$ a a t $x+x_1$ $x - x_1$ х x x_1 y y_1 0 y y_1 0 p p p p

Left diagram:

$$\int dx_1 \left[\int \frac{p^+ dy_1^-}{2\pi} e^{ix_1 p^+ (y_1^- - y^-)} n \cdot A^a(y_1^-) \right] \mathcal{M}(-igt^a) \frac{\gamma \cdot p}{p^+} \frac{i((x - x_1 - x_B)\gamma \cdot p + (Q^2/2x_B p^+)\gamma \cdot n)}{(x - x_1 - x_B)Q^2/x_B + i\epsilon}$$
$$= g \int \frac{dy_1^-}{2\pi} n \cdot A^a(y_1^-) t^a \left[\int dx_1 \frac{1}{-x_1 + i\epsilon} e^{ix_1 p^+ (y_1^- - y^-)} \right] \mathcal{M} = -ig \int_{y^-}^{\infty} dy_1^- n \cdot A(y_1^-) \mathcal{M}$$

Right diagram:

$$\int dx_1 \left[\int \frac{p^+ dy_1^-}{2\pi} e^{ix_1 p^+ y_1^-} n \cdot A^a(y_1^-) \right] \frac{-i((x+x_1-x_B)\gamma \cdot p + (Q^2/2x_B p^+)\gamma \cdot n)}{(x+x_1-x_B)Q^2/x_B - i\epsilon} (+igt^a) \frac{\gamma \cdot p}{p^+} \mathcal{M}$$
$$= g \int \frac{dy_1^-}{2\pi} n \cdot A^a(y_1^-) t^a \left[\int dx_1 \frac{1}{x_1 - i\epsilon} e^{ix_1 p^+ y_1^-} \right] \mathcal{M} = ig \int_0^\infty dy_1^- n \cdot A(y_1^-) \mathcal{M}$$

Total contribution:

 $-ig\left[\int_0^\infty - \int_{y^-}^\infty\right] dy_1^- n \cdot A(y_1^-) \mathcal{M}_{LO} \qquad \qquad \begin{array}{l} \mathbf{O(g)-term of} \\ \mathbf{the gauge link!} \end{array}$

QCD high order corrections

□ NLO partonic diagram to structure functions:

$$\begin{cases} k_1^2 \sim 0 \\ t_{AB} \rightarrow \infty \end{cases}$$

Diagram has both long- and short-distance physics

□ Factorization, separation of short- from long-distance:

QCD leading power factorization

Logarithmic contributions into parton distributions:

To separate the collinear from non-collinear contribution

Recall: renormalization scale to separate local from non-local contribution

Picture of factorization for DIS

Unitarity – summing over all hard jets:

Collaboration

Interaction between the "past" and "now" are suppressed!

Use DIS structure function F_2 as an example:

$$F_{2h}(x_B, Q^2) = \sum_{q, f} C_{q/f}\left(\frac{x_B}{x}, \frac{Q^2}{\mu^2}, \alpha_s\right) \otimes \varphi_{f/h}\left(x, \mu^2\right) + O\left(\frac{\Lambda_{\text{QCD}}^2}{Q^2}\right)$$

 \diamond Apply the factorized formula to a parton state: $h \rightarrow q$

Feynman
diagrams
$$\longrightarrow F_{2q}(x_B, Q^2) = \sum_{q,f} C_{q/f}\left(\frac{x_B}{x}, \frac{Q^2}{\mu^2}, \alpha_s\right) \otimes \varphi_{f/q}(x, \mu^2) \leftarrow feynman$$

diagrams

 \diamond Express both SFs and PDFs in terms of powers of α_s :

$$\begin{array}{lll} \mathbf{0}^{\text{th}} \text{ order:} & F_{2q}^{(0)}(x_B, Q^2) = C_q^{(0)}(x_B / x, Q^2 / \mu^2) \otimes \varphi_{q/q}^{(0)}\left(x, \mu^2\right) \\ & & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \mathbf{1}^{\text{th}} \text{ order:} & F_{2q}^{(1)}(x_B, Q^2) = C_q^{(1)}(x_B / x, Q^2 / \mu^2) \otimes \varphi_{q/q}^{(0)}\left(x, \mu^2\right) \\ & & + C_q^{(0)}(x_B / x, Q^2 / \mu^2) \otimes \varphi_{q/q}^{(1)}\left(x, \mu^2\right) \\ & & \\ \hline \hline & & \\ \hline & & \\ \hline \hline \\ \hline \hline & & \\ \hline \hline \hline \\ \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline$$

ollaboratior

Change the state without changing the operator:

$$\begin{split} \phi_{q/h}(x,\mu^2) &= \int \frac{dy^-}{2\pi} \, e^{ixp^+y^-} \langle h(p) | \overline{\psi}_q(0) \frac{\gamma^+}{2} \, U^n_{[0,y^-]} \, \psi_2(y^-) | h(p) \rangle \\ | h(p) \rangle \Rightarrow | \text{parton}(p) \rangle \longrightarrow \phi_{f/q}(x,\mu^2) - \text{given by Feynman diagrams} \end{split}$$

p

Lowest order quark distribution:

 \diamond From the operator definition:

$$\phi_{q'/q}^{(0)}(x) = \delta_{qq'} \int \frac{d^4k}{(2\pi)^4} \operatorname{Tr}\left[\left(\frac{1}{2}\gamma \cdot p\right)\left(\frac{\gamma^+}{2p^+}\right)\right] \delta\left(x - \frac{k^+}{p^+}\right) (2\pi)^4 \delta^4(p-k)$$
$$= \delta_{qq'} \delta(1-x)$$

 \Box Leading order in α_s quark distribution:

 \Rightarrow Expand to $(g_s)^2$ – logarithmic divergent:

$$\phi_{q/q}^{(1)}(x) = C_F \frac{\alpha_s}{2\pi} \int \frac{dk_T^2}{k_T^2} \left[\frac{1+x^2}{(1-x)_+} + \frac{3}{2} \,\delta(1-x) \right] + \text{UVCT}$$

$$\textbf{UV and CO divergence} \qquad \textbf{Choice of regularization}$$

Projection operators for SFs:

$$W_{\mu\nu} = -\left(g_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{q^2}\right)F_1\left(x, Q^2\right) + \frac{1}{p \cdot q}\left(p_{\mu} - q_{\mu}\frac{p \cdot q}{q^2}\right)\left(p_{\nu} - q_{\nu}\frac{p \cdot q}{q^2}\right)F_2\left(x, Q^2\right)$$

$$F_{1}(x,Q^{2}) = \frac{1}{2} \left(-g^{\mu\nu} + \frac{4x^{2}}{Q^{2}} p^{\mu} p^{\nu} \right) W_{\mu\nu}(x,Q^{2})$$
$$F_{2}(x,Q^{2}) = x \left(-g^{\mu\nu} + \frac{12x^{2}}{Q^{2}} p^{\mu} p^{\nu} \right) W_{\mu\nu}(x,Q^{2})$$

0th order:

$$C_q^{(1)}(x,Q^2/\mu^2) = F_{2q}^{(1)}(x,Q^2) - F_{2q}^{(0)}(x,Q^2) \otimes \varphi_{q/q}^{(1)}(x,\mu^2)$$

Projection operators in n-dimension:

 $g_{\mu\nu}g^{\mu\nu} = n \equiv 4 - 2\varepsilon$

$$(1-\varepsilon)F_2 = x\left(-g^{\mu\nu} + (3-2\varepsilon)\frac{4x^2}{Q^2}p^{\mu}p^{\nu}\right)W_{\mu\nu}$$

Feynman diagrams:

Calculation:

 $-g^{\mu\nu}W^{(1)}_{\mu\nu,q}$ and $p^{\mu}p^{\nu}W^{(1)}_{\mu\nu,q}$

Lowest order in n-dimension:

$$-g^{\mu\nu}W^{(0)}_{\mu\nu,q} = e_q^2(1-\varepsilon)\delta(1-x)$$

NLO virtual contribution:

$$-g^{\mu\nu}W^{(1)\nu}_{\mu\nu,q} = e_q^2(1-\varepsilon)\delta(1-x)$$
$$*\left(-\frac{\alpha_s}{\pi}\right)C_F\left[\frac{4\pi\mu^2}{Q^2}\right]^{\varepsilon}\frac{\Gamma(1+\varepsilon)\Gamma^2(1-\varepsilon)}{\Gamma(1-2\varepsilon)}\left[\frac{1}{\varepsilon^2} + \frac{3}{2}\frac{1}{\varepsilon} + 4\right]$$

NLO real contribution:

$$-g^{\mu\nu}W^{(1)R}_{\mu\nu,q} = e_q^2(1-\varepsilon)C_F\left(-\frac{\alpha_s}{2\pi}\right)\left[\frac{4\pi\mu^2}{Q^2}\right]^{\varepsilon}\frac{\Gamma(1+\varepsilon)}{\Gamma(1-2\varepsilon)} \\ *\left\{-\frac{1-\varepsilon}{\varepsilon}\left[1-x+\left(\frac{2x}{1-x}\right)\left(\frac{1}{1-2\varepsilon}\right)\right] + \frac{1-\varepsilon}{2(1-2\varepsilon)(1-x)} + \frac{2\varepsilon}{1-2\varepsilon}\right\}$$

□ The "+" distribution:

$$\left(\frac{1}{1-x}\right)^{1+\varepsilon} = -\frac{1}{\varepsilon}\delta(1-x) + \frac{1}{(1-x)_+} + \varepsilon\left(\frac{\ell n(1-x)}{1-x}\right)_+ + O(\varepsilon^2)$$

$$\int_{z}^{1} dx \frac{f(x)}{(1-x)_{+}} \equiv \int_{z}^{1} dx \frac{f(x) - f(1)}{1-x} + \ln(1-z)f(1)$$

One loop contribution to the trace of W_{$\mu\nu$}:

$$-g^{\mu\nu}W^{(1)}_{\mu\nu,q} = e_q^2(1-\varepsilon)\left(\frac{\alpha_s}{2\pi}\right)\left\{-\frac{1}{\varepsilon}P_{qq}(x) + P_{qq}(x)\ell n\left(\frac{Q^2}{\mu^2(4\pi e^{-\gamma_E})}\right) + C_F\left[\left(1+x^2\right)\left(\frac{\ell n(1-x)}{1-x}\right)_+ -\frac{3}{2}\left(\frac{1}{1-x}\right)_+ -\frac{1+x^2}{1-x}\ell n(x) + 3-x-\left(\frac{9}{2}+\frac{\pi^2}{3}\right)\delta(1-x)\right]\right\}$$

Splitting function:

$$P_{qq}(x) = C_F \left[\frac{1+x^2}{(1-x)_+} + \frac{3}{2}\delta(1-x) \right]$$

One loop contribution to p^{\mu}p^{\nu} W_{\mu\nu}:

$$p^{\mu}p^{\nu}W_{\mu\nu,q}^{(1)\nu} = 0 \qquad p^{\mu}p^{\nu}W_{\mu\nu,q}^{(1)R} = e_q^2 C_F \frac{\alpha_s}{2\pi} \frac{Q^2}{4x}$$

One loop contribution to F_2 of a quark:

$$F_{2q}^{(1)}(x,Q^2) = e_q^2 x \frac{\alpha_s}{2\pi} \left\{ \left(-\frac{1}{\varepsilon} \right)_{CO} P_{qq}(x) \left(1 + \varepsilon \ell n (4\pi e^{-\gamma_E}) \right) + P_{qq}(x) \ell n \left(\frac{Q^2}{\mu^2} \right) \right. \\ \left. + C_F \left[(1 + x^2) \left(\frac{\ell n (1 - x)}{1 - x} \right)_+ - \frac{3}{2} \left(\frac{1}{1 - x} \right)_+ - \frac{1 + x^2}{1 - x} \ell n(x) + 3 + 2x - \left(\frac{9}{2} + \frac{\pi^2}{3} \right) \delta(1 - x) \right] \right\} \\ \Rightarrow \quad \infty \quad \text{as} \quad \varepsilon \to 0$$

One loop contribution to quark PDF of a quark:

$$\varphi_{q/q}^{(1)}(x,\mu^2) = \left(\frac{\alpha_s}{2\pi}\right) P_{qq}(x) \left\{ \left(\frac{1}{\varepsilon}\right)_{UV} + \left(-\frac{1}{\varepsilon}\right)_{CO} \right\} + UV-CT$$

- in the dimensional regularization

Different UV-CT = different factorization scheme!

NLO coefficient function for inclusive DIS:

Common UV-CT terms:

$$\Rightarrow \text{ MS scheme:} \qquad \text{UV-CT}|_{\text{MS}} = -\frac{\alpha_s}{2\pi} P_{qq}(x) \left(\frac{1}{\varepsilon}\right)_{\text{UV}}$$

$$\Rightarrow \overline{\text{MS scheme:}} \qquad \text{UV-CT}|_{\overline{\text{MS}}} = -\frac{\alpha_s}{2\pi} P_{qq}(x) \left(\frac{1}{\varepsilon}\right)_{\text{UV}} \left(1 + \varepsilon \ell n (4\pi e^{-\gamma_E})\right)$$

$$\Rightarrow \text{ DIS scheme: choose a UV-CT, such that} \qquad C_q^{(1)}(x, Q^2 / \mu^2)|_{\text{DIS}} = 0$$

One loop coefficient function:

$$C_{q}^{(1)}(x,Q^{2}/\mu^{2}) = F_{2q}^{(1)}(x,Q^{2}) - F_{2q}^{(0)}(x,Q^{2}) \otimes \varphi_{q/q}^{(1)}(x,\mu^{2})$$

$$C_{q}^{(1)}(x,Q^{2}/\mu^{2}) = e_{q}^{2}x\frac{\alpha_{s}}{2\pi} \left\{ P_{qq}(x)\ell n \left(\frac{Q^{2}}{\mu_{\overline{MS}}^{2}}\right) + C_{F}\left[(1+x^{2})\left(\frac{\ell n(1-x)}{1-x}\right)_{+} - \frac{3}{2}\left(\frac{1}{1-x}\right)_{+} - \frac{1+x^{2}}{1-x}\ell n(x) + 3 + 2x - \left(\frac{9}{2} + \frac{\pi^{2}}{3}\right)\delta(1-x) \right] \right\}$$

D Physical cross sections should not depend on the factorization scale

$$\mu_F^2 \frac{d}{d\mu_F^2} F_2(x_B, Q^2) = 0 \qquad F_2(x_B, Q^2) = \sum_f C_f(x_B/x, Q^2/\mu_F^2, \alpha_s) \otimes \phi_f(x, \mu_F^2)$$
Evolution (differential-integral) equation for PDFs
$$\sum_f \left[\mu_F^2 \frac{d}{d\mu_F^2} C_f\left(\frac{x_B}{x}, \frac{Q^2}{\mu_F^2}, \alpha_s\right) \right] \otimes \varphi_f\left(x, \mu_F^2\right) + \sum_f C_f\left(\frac{x_B}{x}, \frac{Q^2}{\mu_F^2}, \alpha_s\right) \otimes \mu_F^2 \frac{d}{d\mu_F^2} \varphi_f\left(x, \mu_F^2\right) = 0$$

PDFs and coefficient functions share the same logarithms

PDFs: Coefficient functions:

$$\log(\mu_F^2/\mu_0^2)$$
 or $\log(\mu_F^2/\Lambda_{QCD}^2)$
 $\log(Q^2/\mu_F^2)$ or $\log(Q^2/\mu^2)$

DGLAP evolution equation:

$$\mu_F^2 \frac{\partial}{\partial \mu_F^2} \varphi_i(x, \mu_F^2) = \sum_j P_{i/j}\left(\frac{x}{x'}, \alpha_s\right) \otimes \varphi_j(x', \mu_F^2)$$

Different way to calculate the evolution kernels

Evolution kernels are process independent

 \diamond Parton distribution functions are universal

Could be derived in many different ways

Extract from calculating parton PDFs' scale dependence

 \diamond Same is true for gluon evolution, and mixing flavor terms

One can also extract the kernels from the CO divergence of partonic cross sections, anomalous dimension of the operator, ...

From one hadron to two hadrons

Drell-Yan mechanism:

S.D. Drell and T.-M. Yan Phys. Rev. Lett. 25, 316 (1970)

 $A(P_A) + B(P_B) \rightarrow \gamma^*(q) [\rightarrow l\bar{l}(q)] + X$ with $q^2 \equiv Q^2 \gg \Lambda_{\rm QCD}^2 \sim 1/{\rm fm}^2$

Lepton pair – from decay of a virtual photon, or in general, a massive boson, e.g., W, Z, H⁰, ... (called Drell-Yan like processes)

Original Drell-Yan formula:

Beyond the lowest order:

 P_{B}

- Soft-gluon interaction takes place all the time
- Long-range gluon interaction before the hard collision
 - Break the Universality of PDFs Loss the predictive power

□ Factorization – power suppression of soft gluon interaction:

Gradiential Factorization – approximation:

Suppression of quantum interference between shortdistance (1/Q) and long-distance (fm ~ 1/Λ_{QCD}) physics

Need "long-lived" active parton states linking the two

 \diamond Maintain the universality of PDFs:

Long-range soft gluon interaction has to be power suppressed

 \diamond Infrared safe of partonic parts:

ollaboration

Cancelation of IR behavior Absorb all CO divergences into PDFs

Perturbatively pinched at
$$\ \ p_a^2=0$$

• Active parton is effectively on-shell for the hard collision

$$\int d^4 p_a \, \frac{1}{p_a^2 + i\varepsilon} \, \frac{1}{p_a^2 - i\varepsilon} \to \infty$$

Collins, Soper, Sterman, 1988

Drell-Yan process in QCD – factorization

Leading singular integration regions (pinch surface):

Hard: all lines off-shell by Q

Collinear:

- \diamond lines collinear to A and B
- \diamond One "physical parton" per hadron
- Soft: all components are soft

Collinear gluons:

- ♦ Collinear gluons have the
 - polarization vector: $\epsilon^{\mu} \sim k^{\mu}$
- The sum of the effect can be represented by the eikonal lines,

which are needed to make the PDFs gauge invariant!

Trouble with soft gluons:

Soft gluon exchanged between a spectator quark of hadron B and the active quark of hadron A could rotate the quark's color and keep it from annihilating with the antiquark of hadron B

 \diamond The soft gluon approximations (with the eikonal lines) need k^{\pm} not too small. But, k^{\pm} could be trapped in "too small" region due to the pinch from spectator interaction: $k^{\pm} \sim M^2/Q \ll k_{\perp} \sim M$

Need to show that soft-gluon interactions are power suppressed

Drell-Yan process in QCD – factorization

Most difficult part of factorization:

Sum over all final states to remove all poles in one-half plane

- no more pinch poles
- ♦ Deform the k[±] integration out of the trapped soft region

Eikonal approximation soft gluons to eikonal lines

- gauge links

♦ Collinear factorization: Unitarity soft factor = 1

All identified leading integration regions are factorizable!

Collinear factorization – single hard scale:

Eq.(2.5) of TMD handbook

$$\frac{d\sigma_{AB}}{d^4q} = \int dx_a f_{a/A}(x_a,\mu) \int dx_b f_{b/B}(x_b,\mu) \frac{d\hat{\sigma}_{ab}}{d^4q}(x_a,x_b,\alpha_s(\mu),\mu) + \mathcal{O}(1/Q)$$

for $q_{\perp} \sim Q~$ or q_{\perp} integrated Drell-Yan cross sections: $d^4q = dQ^2 \, dy \, d^2q_T$

\Box TMD factorization ($q_{\perp}\sim Q$):

Eq.(2.6) of TMD handbook

$$\frac{d\sigma_{AB}}{d^4q} = \sigma_0 \int d^2 k_{a\perp} d^2 k_{b\perp} d^2 k_{s\perp} \delta^2 (q_\perp - k_{a\perp} - k_{b\perp} - k_{s\perp}) \mathcal{F}_{a/A}(x_A, k_{a\perp}) \mathcal{F}_{b/B}(x_B, k_{b\perp}) \mathcal{S}(k_{s\perp}) + \mathcal{O}(q_\perp/Q) \qquad \qquad x_A = \frac{Q}{\sqrt{s}} e^y \qquad x_B = \frac{Q}{\sqrt{s}} e^{-y}$$

The soft factor, ${\cal S}\,$, is universal, could be absorbed into the definition of TMD parton distribution

Spin dependence:

The factorization arguments at the leading power are independent of the spin states of the colliding hadrons

Same formula with polarized PDFs for γ^* ,W/Z, H⁰...

Factorization for more than two hadrons

Predictive power of QCD factorization

Universality of non-perturbative hadron structure:

lepton-hadron reactions (COMPASS, JLab, EIC)

$$\sigma_{l+P\to l+X}^{\text{EXP}} = \boxed{C_{l+k\to l+X}} \otimes \boxed{\text{PDF}_P} + \mathcal{O}(Q_s^2/Q^2)$$

$$\sigma_{l+P\to l+H+X}^{\text{EXP}} = \boxed{C_{l+k\to l+k+X}} \otimes \boxed{\text{PDF}_P} \otimes \boxed{\text{FF}_H} + \mathcal{O}(Q_s^2/Q^2)$$

hadron-hadron reactions (LHC)

$$\sigma_{P+P\to l+\bar{l}+X}^{\mathrm{EXP}} = \underbrace{C_{k+k\to l+\bar{l}+X}}_{k+k\to l+\bar{l}+X} \otimes \underbrace{\mathrm{PDF}}_{P} \otimes \underbrace{\mathrm{PDF}}_{P} + \mathcal{O}(Q_s^2/Q^2)$$

lepton-lepton reactions (Belle)

laboration

$$\sigma^{\mathrm{EXP}}_{l+\bar{l}\to H+X} = \boxed{C_{l+\bar{l}\to k+X}} \otimes \boxed{\mathrm{FF}_{H}} + \mathcal{O}(Q_s^2/Q^2)$$

□ Hadron structure = Theory + Experiment + Phenomenology:

- Factorization Identify "Good" observables (Theory)
- Measurement Get "Reliable" data (Experiment)
- Global analysis Extract "Universal" structure information (Phenomenology)

by solving an inverse problem

QCD global analysis of experimental data

Q2-dependence is a prediction of pQCD calculation:

Physics interpretation of PDFs:

ollaboration

Scaling and scaling violation

*Q*²-dependence is a prediction of pQCD calculation

QCD factorization works to the precision

Data sets for Global Fits:

	Process	Subprocess	Partons	x range
Fixed Target	$\ell^{\pm}\left\{p,n\right\} \to \ell^{\pm} + X$	$\gamma^* q \rightarrow q$	q, \overline{q}, g	$x \gtrsim 0.01$
	$\ell^{\pm} n/p \rightarrow \ell^{\pm} + X$	$\gamma^* d/u \rightarrow d/u$	d/u	$x \gtrsim 0.01$
	$pp \rightarrow \mu^+\mu^- + X$	$u\bar{u}, d\bar{d} \rightarrow \gamma^*$	q	$0.015 \lesssim x \lesssim 0.35$
	$pn/pp \rightarrow \mu^+\mu^- + X$	$(u\overline{d})/(u\overline{u}) \rightarrow \gamma^*$	d/ū	$0.015 \lesssim x \lesssim 0.35$
	$\nu(\bar{\nu}) N \rightarrow \mu^-(\mu^+) + X$	$W^*q \rightarrow q'$	q, \overline{q}	$0.01 \lesssim x \lesssim 0.5$
	$\nu N \rightarrow \mu^- \mu^+ + X$	$W^*s \rightarrow c$	5	$0.01 \lesssim x \lesssim 0.2$
	$\bar{\nu}N \rightarrow \mu^+\mu^- + X$	$W^*\overline{s} \rightarrow \overline{c}$	5	$0.01 \lesssim x \lesssim 0.2$
Collider DIS	$e^{\pm} p \rightarrow e^{\pm} + X$	$\gamma^*q \rightarrow q$	g, q, \overline{q}	$0.0001 \lesssim x \lesssim 0.1$
	$e^+ p \rightarrow \bar{\nu} + X$	$W^+\{d, s\} \rightarrow \{u, c\}$	d, s	$x \gtrsim 0.01$
	$e^{\pm}p \rightarrow e^{\pm}c\overline{c} + X$	$\gamma^* c \to c, \gamma^* g \to c \overline{c}$	с, д	$10^{-4} \lesssim x \lesssim 0.01$
	$e^{\pm}p \rightarrow e^{\pm}b\overline{b} + X$	$\gamma^*b \rightarrow b, \gamma^*g \rightarrow b\overline{b}$	b, g	$10^{-4} \lesssim x \lesssim 0.01$
	$e^{\pm}p \rightarrow \text{jet} + X$	$\gamma^*g \rightarrow q\bar{q}$	8	$0.01 \lesssim x \lesssim 0.1$
Tevatron	$p\bar{p} \rightarrow \text{jet} + X$	$gg, qg, qq \rightarrow 2j$	g,q	$0.01 \lesssim x \lesssim 0.5$
	$p\bar{p} \rightarrow (W^{\pm} \rightarrow \ell^{\pm} \nu) + X$	$ud \rightarrow W^+, \overline{ud} \rightarrow W^-$	u,d,ū,đ	$x \gtrsim 0.05$
	$p\bar{p} \rightarrow (Z \rightarrow \ell^+ \ell^-) + X$	$uu, dd \rightarrow Z$	u,d	$x \gtrsim 0.05$
	$p\bar{p} \rightarrow t\bar{t} + X$	$qq \rightarrow t\bar{t}$	q	$x \gtrsim 0.1$
LHC	$pp \rightarrow \text{jet} + X$	$gg, qg, q\bar{q} \rightarrow 2j$	g,q	$0.001 \lesssim x \lesssim 0.5$
	$pp \rightarrow (W^{\pm} \rightarrow \ell^{\pm} \nu) + X$	$ud \rightarrow W^+, d\bar{u} \rightarrow W^-$	u,d,ū,đ,g	$x \gtrsim 10^{-3}$
	$pp \rightarrow (Z \rightarrow \ell^+ \ell^-) + X$	$q\bar{q} \rightarrow Z$	q, \overline{q}, g	$x \gtrsim 10^{-3}$
	$pp \to (Z \to \ell^+ \ell^-) + X, p_\perp$	$gq(\bar{q}) \rightarrow Zq(\bar{q})$	g, q, \overline{q}	$x \gtrsim 0.01$
	$pp \rightarrow (\gamma^* \rightarrow \ell^+ \ell^-) + X$, Low mass	$q\bar{q} \rightarrow \gamma^*$	q, \overline{q}, g	$x \gtrsim 10^{-4}$
	$pp \rightarrow (\gamma^* \rightarrow \ell^+ \ell^-) + X$, High mass	$q\bar{q} \rightarrow \gamma^*$	\overline{q}	$x \gtrsim 0.1$
	$pp \rightarrow W^+\bar{c}, W^-c$	$sg \rightarrow W^+c, \overline{s}g \rightarrow W^-\overline{c}$	<i>s</i> , <i>s</i>	$x \sim 0.01$
	$pp \rightarrow t\bar{t} + X$	$gg \rightarrow t\bar{t}$	8	$x \gtrsim 0.01$
	$pp \rightarrow D, B + X$	$gg \rightarrow c\overline{c}, b\overline{b}$	8	$x \gtrsim 10^{-6}, 10^{-5}$
	$pp \rightarrow J/\psi, \Upsilon + pp$	$\gamma^*(gg) \rightarrow c\overline{c}, b\overline{b}$	8	$x \gtrsim 10^{-6}, 10^{-5}$
	$pp \rightarrow \gamma + X$	$gq(\bar{q}) \rightarrow \gamma q(\bar{q})$	8	$x \gtrsim 0.005$

Unprecedent Success of QCD and Standard Model

SM: Electroweak processes + QCD perturbation theory + PDFs works!

Probes for 3D hadron structure

□ Single scale hard probe is too "localized":

It pins down the particle nature of quarks and gluons
 But, not very sensitive to the detailed structure of hadron ~ fm
 Transverse confined motion: k_T ~ 1/fm << Q
 Transverse spatial position: b_T ~ fm >> 1/Q

□ Need new type of "Hard Probes" – Physical observables with TWO Scales:

 $Q_1 \gg Q_2 \sim 1/R \sim \Lambda_{\rm QCD}$

Hard scale: Q_1 To localize the probe particle nature of quarks/gluons

"Soft" scale: Q₂ could be more sensitive to the hadron structure ~ 1/fm

Hit the hadron "very hard" without breaking it, clean information on the structure!

See lectures by Stewart

TMDs

Drell-Yan process in hadron-hadron collisions:

The process:
$$\sigma_{P+P}^{\mathrm{EXP}}$$

$$\sum_{P+P\to l+\bar{l}+X}^{\text{EXP}} = \underbrace{C_{k+k\to l+\bar{l}+X}}_{W} \otimes \underbrace{\text{PDF}_P} \otimes \underbrace{\text{PDF}_P} + \mathcal{O}(Q_s^2/Q^2)$$

One-scale case:

$$\frac{d\sigma_{hh'}^{\text{DY}}(p_A, p_B, q)}{dQ^2} = \sum_{f, f'} \int_0^1 dx \int_0^1 dx' \phi_f(x) \frac{d\hat{\sigma}_{ff'}^{\text{el}}(xp_A, x'p_B, q)}{dQ^2} \phi_{f'}(x')$$

Hard scale – invariant mass of the lepton-pair: $Q^2 \equiv q^2 = (l + \bar{l})^2 \gg \Lambda_{\rm QCD}^2 \sim 1/R_h^2$

Two-scale case:

$$\frac{d\sigma_{AB}}{d^4q} = \sigma_0 \int d^2 k_{a\perp} d^2 k_{b\perp} d^2 k_{s\perp} \delta^2 (q_\perp - k_{a\perp} - k_{b\perp} - k_{s\perp}) \mathcal{F}_{a/A}(x_A, k_{a\perp}) \mathcal{F}_{b/B}(x_B, k_{b\perp}) \mathcal{S}(k_{s\perp})$$

Hard scale: Q^2 Soft scale: q_T^2 when $Q^2 \gg q_T^2$ $d^4q = dy \, dQ^2 dq_T^2 d\phi_q$

Confined motion vs. collision effects:

Why a lepton-hadron facility, like EIC, is special?

□ The new generation of "Rutherford" experiment:

♦ A controlled "probe" – virtual photon

 \diamond Can either break or not break the hadron

One facility covers all! (JLab, COMPASS, EIC, ...)

 \diamond <u>Inclusive events</u>: e+p/A \rightarrow e'+X

Detect only the scattered lepton in the detector (Modern Rutherford experiment!)

Detect the scattered lepton in coincidence with identified hadrons/jets (Initial hadron is broken – confined motion! – cleaner than h-h collisions)

Detect every things including scattered proton/nucleus (or its fragments)

(Initial hadron is NOT broken – tomography!

almost impossible for h-h collisions)

