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Before we turn to ingredients for phenomenology
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Global Fits

Perturbative accuracy:   N3LL resummation + NNLO matching to PDF

Common  dependence for all flavors: bT

(similar for TMDFF )D1

Unpolarized Data with constraint:     (4-6% power corrections)qT /Q < 0.2 − 0.25

Longitudinal PDFs input from PDF sets 
   (MMHT, NNPDF, etc)

f1,i/h(x, bT , µ, ⇣) = fpert
1,i/h(x, bT , µ, ⇣) f

NP
1 (x, bT )

fpert
1,i/h(x, bT , µ, ⇣) =

X

j

Z
dy

y
Cij(x/y, bT , µ, ⇣)fj(y, µ)

SV19 = Scimemi, Vladimirov  (1912.06532)
Pavia19 = Bachetta, Bertone, Bissolotti, Bozzi, Delcarro, 
                  Piacenza, Radici  (1912.07550)

Common features:

Neglect small contributions from Boer-Mulders terms (higher twist for pert.  ) bT
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Global Fits SV19 = Scimemi, Vladimirov  (1912.06532)
Pavia19 = Bachetta, Bertone, Bissolotti, Bozzi, Delcarro, 
                  Piacenza, Radici  (1912.07550)

Common features:
Good Perturbative convergence:

Figure 3. The cross-section at different orders of TMD factorization and for different boson energies.
The legend of the perturbative orders means that NkLO (NkLL) incorporates ak

s -order (ak�1
s -order) of the

coefficient function, ak
s -order of anomalous dimensions with ak+1

s -order of �cusp. The TMD distributions
and the NP part of the evolution are the same for all cases.

energies. In the plot the TMD distributions and the NP part of the evolution are held fixed while
the perturbative orders are changed. The perturbative series converges very well, and the difference
between NNLO and N3LO factorization is of order of percents. This is an additional positive aspect
of the ⇣-prescription, which is due to fact that all perturbative series are evaluated at µ = Q.

2.4.1 Matching of TMD distribution to collinear distributions

The TMD are generic non-perturbative functions that depend on the parton fraction x and the
impact parameter b. A fit of a two-variable function is a hopeless task due to the enormous
parametric freedom. This freedom can be essentially reduced by the matching of a b ! 0 boundary
of a TMD distribution to the corresponding collinear distribution. In the asymptotic limit of small-b
one has

lim
b!0

f1,f h(x, b) =
X

f 0

Z 1

x

dy

y
Cf f 0

✓
x

y
,LµOPE

, as(µOPE)

◆
f1,f 0 h(y, µOPE), (2.76)

lim
b!0

D1,f!h(z, b) =
X

f 0

Z 1

z

dy

y
Cf!f 0

✓
z

y
,LµOPE

, as(µOPE)

◆
d1,f 0!h(y, µOPE)

y2
, (2.77)

where f1(x, µ) and d1(x, µ) are collinear PDF and FF, the label f 0 runs over all active quarks,
anti-quarks and a gluon, and

Lµ = ln

✓
b2µ2

4 exp�2�E

◆
, as(µ) =

g2(µ)

(4⇡)2
, (2.78)

with �E being the Euler constant and g being QCD coupling constant. The extra factor y�2

in eq. (2.77) is present due to the normalization difference of the TMD operator in eq. (2.21)
and the collinear operator, see e.g. [5, 25]. The coefficient functions C and C can be calculated
with operator product expansion methods (for a general review see ref. [58]) and in the case of
unpolarized distributions the coefficient functions are known up to NNLO [23, 25, 26, 29]. The
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Figure 6. Graphical representation of Tab. 6.
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Figure 7. Comparison between experimental data for the ATLAS 8 TeV measurements in the bin
66 GeV < Q < 116 GeV and 1.6 < |y| < 2 and the theoretical predictions obtained from the fits
to all perturbative orders considered in this analysis, i.e. NLL0, NNLL, NNLL0, and N3LL (see
Sec. 2.4). The layout of the plot is the same as in Fig. 4.

In order to quantify the numerical impact of higher-order corrections, in Fig. 7 we
compare the predictions for all the available perturbative orders to the ATLAS 8 TeV data
in the bin 66 GeV < Q < 116 GeV and 1.6 < |y| < 2. This plot shows how the inclusion
of higher-order corrections improves the shape of the predictions, particularly around the
peak region.

4.4 Reduced dataset and x dependence

The non-perturbative function fNP, Eq. (2.36), accounts for the large-bT behaviour of
TMDs. It is in general a function of bT , ⇣, and x. While the asymptotic dependence
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Global Fits SV19 = Scimemi, Vladimirov  (1912.06532)
Pavia19 = Bachetta, Bertone, Bissolotti, Bozzi, Delcarro, 
                  Piacenza, Radici  (1912.07550)

Differences:

Datasets used
SV19 Pavia19

Drell-Yan (457 bins) 
SIDIS (582 bins)

Drell-Yan (353 bins)

PHENIX

E288
E605
E772

LHCb
CDF, D0

ATLAS
CMS

ATLAS(116<Q<150)

ATLAS(46<Q<66)

HERMES

COMPASS

Total:
457 DY points
582 SIDIS points
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Figure 5. Density of data in the plane (Q, x) (a darker color corresponds to a higher density).

TMDPDF that simulates the nuclear-target effects. For example, we replace u-, and d-quark
distributions by

f1,u A(x, b) =
Z

A
f1,u p(x, b) +

A� Z

A
f1,d p(x, b), (4.1)

f1,d A(x, b) =
Z

A
f1,d p(x, b) +

A� Z

A
f1,u p(x, b), (4.2)

where A(Z) is atomic number(charge) of a nuclear target. In principle, for E288, E605 data extracted
from very heavy targets one should also incorporate the nuclear modification factor that depends
on x. In the given kinematics the nuclear modification factor produces effects of order 5-10% in the
normalization of the cross-section. The shape of cross-section is changed in much smaller amount,
about 1% in a point, as it is shown in f.i. [21, 84]. Simultaneously, the systematic (correlated)
errors of these experiments are large 25% and 20%, correspondingly, as well as the uncorrelated
error (typically 2-5%). Therefore, we are not sensitive to nuclear modification effect.

The measurements of SIDIS are made in a number of different channels. The HERMES data
include ⇡± and K±, and COMPASS data are for charged hadrons, h±. Pions and kaons are
described by an individual TMDFFs. However, charged hadrons are a composition of different
TMDFFs. According eq. (2.21) the TMDFF for charged hadrons is a direct sum of TMDFFs for
individual hadrons:

D1,f!h±(x, b) =
X

h2h±

D1,f!h(x, b) = D1,f!⇡±(x, b) +D1,f!K±(x, b) + ... , (4.3)

where dots denote the higher-mass hadron states. At COMPASS energies, this sum is dominated
by the pion (65� 75%), and the kaon (15� 20%) contributions. The residual term is lead by pro-
ton/antiproton contribution (2� 5%). The contribution of other particles is smaller (for discussion
and references see [85, 86]). Thus, in our study we use the first two terms of eq. (4.3) to simulate
the charged hadron fragmentation.
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Figure 3. Kinematic coverage on the x1 vs. x2 plane of the dataset included in the present analysis.

As evident from the “Observable” column of Tab. 2, experimental cross sections are
released in different forms. In addition, some of them are normalised to the total (fiducial)
cross section while others are not. In our analysis, we expressed all the absolute cross
sections in terms of the observable given in Eq. (2.10) (details on the transformations
between different observables can be found in Ref. [21]). When necessary, the total cross
section � required to normalise the differential cross sections is computed using DYNNLO [94,
95] with the MMHT2014 collinear PDF sets [54], taking into account the selection cuts and
consistently with the perturbative order of the differential cross section. More precisely,
the total cross section is computed at LO for NLL accuracy, at NLO for NLL’ and NNLL,
and at NNLO for NNLL’ and N3LL. The values of the total cross sections at different
orders are reported in Tab. 3. We stress that in this analysis no additional normalisations
have been applied, with the consequence that both the shape and the normalisation of the
experimental distributions have an impact on the fit.

Most of the considered experimental datasets are released with a set of uncorrelated
and correlated uncertainties. As already pointed out in Ref. [16], a proper treatment of
the experimental uncertainties is crucial to achieve a reliable extraction of TMDs. In
other words, the �2, which quantifies the agreement between data and predictions and
is minimised during the fit, has to be computed taking into account the nature of the
various uncertainties. Particular care has to be taken with the (correlated) normalisation
uncertainties. As is well known, an inappropriate description of normalisation uncertainties
may lead to underestimate the predictions: that is the so-called D’Agostini bias [96, 97].
Different prescriptions have been devised to avoid this problem [98]: in this analysis we
adopt the so-called iterative t0-prescription [99].
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x1 = Qey / s, x2 = Qe−y / s

Some differences in solution of evolution equations (not discussed here)
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Global Fits SV19 = Scimemi, Vladimirov  (1912.06532)
Pavia19 = Bachetta, Bertone, Bissolotti, Bozzi, Delcarro, 
                  Piacenza, Radici  (1912.07550)

Differences:
Non-perturbative Models

SV19 Pavia19

2.4.2 Ansatzes for NP functions

In this work we deal with three independent non-perturbative functions in total. These are the
unpolarized (optimal) TMDPDF, f1(x, b), the unpolarized (optimal) TMDFF, D1(x, b), and the
RAD, D(b, µ). The amount of perturbative and non-perturbative contributions to each function
depends on the value of the impact parameter b. Namely, at small values of b the perturbative
approximation is good and the TMD distributions can be matched onto collinear functions as in
eq. (2.76, 2.77). In the case of the RAD the small-b limit is given in appendix B. The small-
b perturbative expressions gains power corrections in even powers b2n [61]. Therefore, with the
increase of b the perturbative approximation becomes less and less correct, and must be replaced
by some generic function.

The phenomenological ansatzes for TMD distributions that satisfy this picture, can be written
as following:

f1,f h(x, b) =

Z 1

x

dy

y

X

f 0

Cf f 0 (y,LµOPE
, as(µOPE)) f1,f 0 h

✓
x

y
, µOPE

◆
fNP(x, b), (2.84)

D1,f!h(z, b) =
1

z2

Z 1

z

dy

y

X

f 0

y2Cf!f 0 (y,LµOPE
, as(µOPE)) d1,f 0!h

✓
z

y
, µOPE

◆
DNP(z, b), (2.85)

where functions fNP and DNP are non-perturbative functions. Note, that in our ansatz we do not
modify the value of b within the coefficient function. Therefore, at large-b the logarithm part of
the coefficient function grows unrestrictedly. This growth is suppressed by the non-perturbative
functions.

Generally, the functions fNP and DNP depend also on parton flavor f and hadron type h.
However, in the present work we use the approximation that fNP and DNP are flavor and hadron-

type independent. All hadron- and flavor dependence is driven by the collinear PDFs and FFs (see
also sec. 4.1). Given such an ansatz the only requirement for NP functions is that they are even-
functions of b that turn to unity for b ! 0 (see ref. [61] for an analysis of these processes using
renormalons). We use the following parameterizations

fNP (x, b) = exp

 
��1(1� x) + �2x+ x(1� x)�5p

1 + �3x�4b2
b2
!
, (2.86)

DNP (x, b) = exp

 
�⌘1z + ⌘2(1� z)p

1 + ⌘3(b/z)2
b2

z2

!✓
1 + ⌘4

b2

z2

◆
, (2.87)

and we extract �i and ⌘i from our fit. The functional form of fNP has been already used in [20]. It
has five free parameters which grant a sufficient flexibility in x-space as needed for the description of
the precise LHC data. The form of DNP has been suggested in [18] (albeit there are more parameters
in [18]). In both cases the function has exponential or Gaussian form depending on the relative
size of �1,2,5/�3, and ⌘1,2/⌘3. There are natural restrictions on the parameter space �1,2,3 > 0,
⌘1,2,3 > 0, �5 & �2(�1 + �2), due to the request that TMD distribution is null for b ! 1.

We use the following ansatz for the NP RAD,

D(µ, b) = Dresum(µ, b⇤(b)) + c0bb
⇤(b), (2.88)

where

b⇤(b) =
bp

1 + b2/B2
NP

. (2.89)

The the term c0bb⇤(b) dictates the large-b behavior of the RAD and its form is suggested in [20].
At large-b the NP expression for RAD is linear in b, D ⇠ c0BNPb. The linear behavior is suggested
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and we extract �i and ⌘i from our fit. The functional form of fNP has been already used in [20]. It
has five free parameters which grant a sufficient flexibility in x-space as needed for the description of
the precise LHC data. The form of DNP has been suggested in [18] (albeit there are more parameters
in [18]). In both cases the function has exponential or Gaussian form depending on the relative
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We use the following ansatz for the NP RAD,
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where
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The the term c0bb⇤(b) dictates the large-b behavior of the RAD and its form is suggested in [20].
At large-b the NP expression for RAD is linear in b, D ⇠ c0BNPb. The linear behavior is suggested
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functions of b that turn to unity for b ! 0 (see ref. [61] for an analysis of these processes using
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and we extract �i and ⌘i from our fit. The functional form of fNP has been already used in [20]. It
has five free parameters which grant a sufficient flexibility in x-space as needed for the description of
the precise LHC data. The form of DNP has been suggested in [18] (albeit there are more parameters
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The the term c0bb⇤(b) dictates the large-b behavior of the RAD and its form is suggested in [20].
At large-b the NP expression for RAD is linear in b, D ⇠ c0BNPb. The linear behavior is suggested
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2.5 Non-perturbative content and its parameterisation

In the previous section, we noticed that in the MS scheme the rapidity evolution kernel K

and the matching functions C can be made free of logarithms of the scales by introducing
the natural scale µb defined in Eq. (2.19). Consistently, in the perturbative expansion of
K (see first line of Eq. (2.22)) and C (see Eq. (2.21)) the strong coupling ↵s must be
computed at µb. For large values of bT , µb becomes small such that ↵s(µb) may potentially
become very large and eventually diverge when µb reaches the Landau pole at ⇤QCD. As a
matter of fact, the integral in Eq. (2.10) does require accessing large values of bT . It is then
necessary to regularise this divergence by introducing a prescription that avoids integrating
over the Landau pole. Different possibilities are available (see, e.g., Refs. [53, 56]). In
this paper, we adopt the prescription originally proposed in Ref. [57]: we introduces the
arbitrary parameter bmax that denotes the maximum value of bT at which perturbation
theory is considered reliable. Hence, bmax must be such that

↵s

✓
2e��E

bmax

◆
⌧ 1 . (2.32)

Moreover, we also want to prevent µb from becoming much larger than the hard scale Q

(µb � Q). Despite not strictly mandatory (especially when considering only small values
of qT ), this feature makes it possible to expand the cross section integrated in qT , with the
lowest-order term reproducing the lowest-order collinear result [58]. To this end, we define

bmin =
2e��E

Q
, (2.33)

and introduce a monotonic function b⇤(bT ) with the following asymptotic behaviours

b⇤(bT ) ! bmin for bT ! 0 ,

b⇤(bT ) ! bmax for bT ! 1 .
(2.34)

In this analysis, we adopt for b⇤(bT ) the same functional form chosen in Ref. [21] that
guarantees a smooth and rapid convergence towards the asymptotic limits:

b⇤(bT ) = bmax

0

@
1 � exp

⇣
� b4T

b4max

⌘

1 � exp
⇣
� b4T

b4min

⌘

1

A

1
4

. (2.35)

Now, we simply writes the TMD f̂1 as

f̂1(x, bT ; µ, ⇣) =

"
f̂1(x, bT ; µ, ⇣)

f̂1(x, b⇤(bT ); µ, ⇣)

#
f̂1(x, b⇤(bT ); µ, ⇣)

⌘ fNP(x, bT , ⇣)f̂1(x, b⇤(bT ); µ, ⇣) .

(2.36)

This separation effectively defines fNP. The advantage is that, due to the behaviour of
b⇤(bT ) for large values of bT , f̂1(x, b⇤(bT ), µ, ⇣) remains in the perturbative region. The
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with µb⇤ ⌘ µb(b⇤(bT )). The dependence on µ evidently cancels in the ratio. In addition,
for large values of bT µb⇤ saturates to some minimal value while µb becomes increasingly
small. As a consequence of this departure between µb⇤ and µb, as well as between

p
⇣ and

µb, the exponential in Eq. (2.37) tends to be suppressed, and so does fNP. Conversely, as
bT becomes small b⇤ approaches bmin. Using the definition in Eq. (2.33), it follows that µb⇤

saturates to Q while µb becomes larger and larger. In this limit, we have [58]

fNP �!
bT!0

1 + O
✓

1

Qp

◆
, (2.38)

where p is some positive number. Since TMD factorisation applies to leading-power in
qT /Q, we can neglect the power suppressed contribution such that fNP ! 1 for bT ! 0.
It is important to stress that the separation between perturbative and non-perturbative
components of a TMD is arbitrary and depends on the particular choice of b⇤ (or in general
on the prescription used to regularise the Landau pole). For any given choice, only the
combination in Eq. (2.36) is meaningful, and it is misleading to refer to fNP as to the
non-perturbative part of TMDs in a universal sense.

Following the requirements discussed above, we parameterise fNP as

fNP(x, bT , ⇣) =
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1 � �

1 + g1(x)
b2T
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✓
�g1B(x)

b2T
4

◆#
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
�
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g2 + g2Bb2T

�
ln

✓
⇣

Q2
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◆
b2T
4

�
,

(2.39)

with Q0 = 1 GeV and with the g1(x) and g1B(x) functions given by

g1(x) =
N1

x�
exp


� 1

2�2
ln2

⇣x

↵

⌘�
,

g1B(x) =
N1B

x�B
exp


� 1

2�2
B

ln2

✓
x

↵B

◆�
.

(2.40)

There are a total of 9 free parameters (�, g2, g2B, N1, �, ↵, N1B, �B, ↵B) to be determined
from data.
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Note:  model form for b* used to split perturbative & non-perturbative parts
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Global Fits SV19 = Scimemi, Vladimirov  (1912.06532)
Pavia19 = Bachetta, Bertone, Bissolotti, Bozzi, Delcarro, 
                  Piacenza, Radici  (1912.07550)

Fit Results:

Parameter Value
g2 0.036 ± 0.009
N1 0.625 ± 0.282
↵ 0.205 ± 0.010
� 0.370 ± 0.063
� 0.580 ± 0.092

N1B 0.044 ± 0.012
↵B 0.069 ± 0.009
�B 0.356 ± 0.075
g2B 0.012 ± 0.003

Table 5. Average and standard deviation over the Monte Carlo replicas of the free parameters
fitted to the data and graphical representation of the correlation matrix.

some uncertainties, such as those due to luminosity and collinear PDFs.

4.2 TMD distributions

We discuss now the TMD distributions extracted from our reference N3LL fit. We stress
once again that only the combination in the r.h.s. of Eq. (2.36) is meaningful.

In order to assess the sensitivity of the experimental dataset to fNP, it is interesting
to look at the values of the free parameters obtained from the fit. In Tab. 5 the average of
each parameter over the Monte Carlo replicas, along with the respective standard deviation,
is reported. All parameters are well constrained.9 It is interesting to observe that the
parameter �, that measures the relative weight of Gaussian and q-Gaussian in Eq. (2.39), is
close to 0.5 indicating that these contributions weigh approximately the same. Concerning
the values of the parameters g2 and g2B associated to the non-perturbative contribution to
TMD evolution, we find that the coefficient g2B of the quartic term is small but significantly
different from zero. This seems to suggest that higher-power corrections to the commonly
assumed quadratic term g2 may be required by the data.

Further insight concerning the appropriateness of the functional form in Eqs. (2.39)-
(2.40) can be gathered by looking at the statistical correlations between parameters. In
the right panel of Tab. 5, we show a graphical representation of the correlation matrix of
the fitted parameters. The first observation is that (off-diagonal) correlations are generally
not very large. There is however one exception, i.e. the parameters � and � seem to
be strongly anti-correlated. This may indicate that the interplay between q-Gaussian and
Gaussian may be significantly x dependent. We leave a deeper study of this feature to a
future publication.

To conclude this section, in Fig. 5 we show the down-quark TMD at µ =
p

⇣ = Q =

2 GeV (left plot) and 10 GeV (right plot) as a function of the partonic transverse momentum

9We stress that the parameters reported in Tab. 5 are not meant to be used in the parameterisation in
Eqs. (2.39)-(2.40) as they are not a direct result of any of our fits.
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SV19 Pavia19

Figure 16. Differential cross-section of DY process (d�/dqT [fb/GeV] vs. qT [GeV]) measured by E605 and
E772 at different values of s and Q. The solid (dashed) lines are the theory prediction at NNLO (N3LO)
shifted by the average systematic shift (see table 8). Filled (empty) point were (not) included in the fit of
NP parameters. For clarity the data of E772 is multiplied by the factors indicated in the plot.

8 Comments on the extracted TMD distributions

The non-perturbative distributions extracted in this work show several features that are interesting
for theory investigations. For instance, the RAD that measures the properties of the soft gluon
exchanges and that is inclusively sensitive to the QCD vacuum structure. The factorization theorem
ensures that the values of BNP and c0 are totally uncorrelated from the rest of TMD parameters,
because they are of complete different origin. As we have an extraction of these parameters from
data we can expect that a certain correlation is re-introduced in the fitting process. In fig. 22
(see also appendix D) we check this statement in the present global fit and we find that it is
qualitatively verified in our DY+SIDIS fit. In the figure the only non-perturbative parameters

�2/Npt NP-parameters

0.95 (NNLO)

RAD BNP = 1.93± 0.17 c0 = (3.91± 0.63)⇥ 10�2

TMDPDF �1 = 0.198± 0.019 �2 = 9.30± 0.55 �3 = 431.± 96.
�4 = 2.12± 0.09 �5 = �4.44± 1.05

TMDFF ⌘1 = 0.260± 0.015 ⌘2 = 0.476± 0.009
⌘3 = 0.478± 0.018 ⌘4 = 0.483± 0.030

1.06 (N3LO)

RAD BNP = 1.93± 0.22 c0 = (4.27± 1.05)⇥ 10�2

TMDPDF �1 = 0.224± 0.029 �2 = 9.24± 0.46 �3 = 375.± 89.
�4 = 2.15± 0.19 �5 = �4.97± 1.37

TMDFF
⌘1 = 0.233± 0.018 ⌘2 = 0.479± 0.025
⌘3 = 0.472± 0.041 ⌘4 = 0.511± 0.040

Table 9. Values of �2 and NP parameters obtained obtained in the global fit of DY and SIDIS data. The
collinear distributions are NNPDF31 and DSS.
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RAD parameters are less sensitive to input PDF set
Universality of RAD satisfied by DY vs. SIDIS data

�2/Npt = 1.02
�2/Npt = 1.06

Low and High energy data are well described
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Global Fits SV19 = Scimemi, Vladimirov  (1912.06532)
Pavia19 = Bachetta, Bertone, Bissolotti, Bozzi, Delcarro, 
                  Piacenza, Radici  (1912.07550)

Comparison of results for CS Kernel in non-perturbative regime:

2
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FIG. 1: Comparison of extracted values of RAD. The lines

labeled as SV19, SV17, Pavia19 and Pavia17 correspond to

Refs.[19],[17],[20], and [16].

NP function, although it still inherits some properties of
an anomalous dimension, such as additive structure of
renormalization group equation, see Eq.(3).

Equation (2) essentially mixes the definitions of two
NP functions: a TMD distribution and RAD. For that
reason, the separation of these functions with the data is
a nontrivial phenomenological task. Nonetheless, it could
be done observing that RAD governs the Q behavior of
the cross section, whereas F ’s govern the x behavior.
Therefore, analyzing a global set of data with a large span
in x and Q, it is possible to decorrelate these functions.
Such global studies were made recently [16–20]. The val-
ues of RAD obtained in these works are shown in Fig.1.
Clearly, there is no agreement between these extractions
for b > 2GeV�1. Another observation is that extrac-
tion based on the joined data of Drell-Yan and SIDIS
cross sections [16, 19] provide a higher value of RAD at
b ⇠ 1GeV�1 in comparison to extraction based only on
the Drell-Yan data [17, 20]. These contradictions could
be resolved by adding more low-qT data in the analysis,
or by some alternative approaches to access RAD. One of
promising approaches is the recently proposed methods
to compute RAD with lattice QCD [21–23].

Definition of RAD. To derive the self-contained ex-
pression for RAD, I take a step backward in the deriva-
tion of Eq.(1) and recall the origin of scale ⇣. At an
intermediate stage, the expression for the cross section
has the form d� ⇠ F̃1⇥S⇥ F̃2 [3, 5], where F̃ are unsub-
tracted TMD distributions, and S is the TMD soft factor.
Each of these terms contains the rapidity divergence(s)
that cancel in the product. To obtain (1), the soft factor
is factorized into parts with only rapidity divergences re-
lated to a particular lightlike direction. Afterwards, they
are combined with F̃ into physical TMD distributions
[6, 24, 25]. The scale ⇣ in the definition of a physical
TMD distribution (2) is the scale of rapidity divergence
factorization. Thus, the soft factor is the primary object

to define RAD.
The TMD soft factor is defined as

SC(b, µ) =
Tr

Nc
h0|WC |0iZ

2
S(µ), (4)

where WC = P exp(ig
R
C dxµAµ(x)) is a gauge link along

the contour C (see fig.2), ZS is the renormalization factor
for lightlike cusps. In Ref.[6] it has been proven that the
TMD soft factor with a properly designed regularization
has the general form

SC(b, µ) = exp (2D(b, µ) ln(%) +B(b, µ) + ...) , (5)

where % is the Lorenz-invariant combination of param-
eters of rapidity divergence regularization(% ! 0). The
function B is the finite part of the soft factor, and the
dots denote terms vanishing at % ! 0. Consequently,
RAD can be obtained from the TMD soft factor as

D(b, µ) =
1

2
lim
%!0

d lnSC(b, µ)

d ln %
. (6)

The expression (5) is a general one, but it is di�cult to
use outside of the perturbation theory. The main com-
plication is the definition of an appropriate rapidity di-
vergence regulator. To guarantee (Eq.5) and make use of
Eq.(6), the regulator must be given on the level of the op-
erator, preserve the gauge invariance, and fully regularize
rapidity divergences without generation of extra infrared
divergences. None of the commonly used regulators
in perturbative calculations regulators (see e.g.Refs.[3–
5, 26–28]) fulfill these requirements entirely. The discus-
sion of the drawbacks in common regularizations can be
found in Refs.[6, 26, 29]. All these requirements can be
fulfilled by a deformation of the contour C such that it
does not touch lightlike infinities [6]. The most straight-
forward deformation is the contour C⇤ shown in Fig.2.
In this case, the parameters ⇤± regularize rapidity diver-
gences at both infinities and % = (⇤+⇤�)�1.
The regularized soft factor SC⇤ is a function of % and

b2 (and µ2), because these are the only nonzero scalar
products in the task. The regularization is removed by
limits ⇤+ ! 1 and ⇤� ! 1, but since the dependence
on ⇤’s is given by a single variable %, one of these limits
is obsolete. For definiteness, I fix ⇤� = ��. The deriva-
tive with respect to % = (⇤+��)�1 can be replaced by
derivative over ��, and Eq.(6) turns into

D(b, µ) =
1

2
lim

⇤+!1

d lnSC⇤(b, µ)

d ln��
. (7)

The action of the derivative is

D(b, µ) = ZD(µ) + (8)

lim
⇤+!1

��
ig

2

Tr
R 1
0 d�h0|Fb+(���n+ b�)WC⇤ |0i

Trh0|WC⇤ |0i
,

where Fb+(x) = bµn⌫Fµ⌫(x), with Fµ⌫ being a gluon-
field strength tensor, and ZD(µ) = d lnZS/d ln��. The

�1

2
�q
⇣ (µ = 4GeV, bT )

(from Vladimirov, 2003.02288)

Fit Results:
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Figure 5. The TMD of the down quark at µ =
p

⇣ = Q = 2 GeV (left plot) and 10 GeV (right
plot) as a function of the partonic transverse momentum k? for three different values of x. The
bands give the 1-� uncertainty.

k? for x = 0.001, 0.1, 0.3. The 1-� uncertainty bands are also shown. As expected, TMDs
are suppressed as k? grows and the suppression becomes relatively stronger as Q increases.

4.3 Perturbative convergence

In the previous section we discussed the quality of our fit at N3LL, which is the best accuracy
presently available. In this section we show how the inclusion of perturbative corrections is
crucial to achieve a better description of the experimental data. To this end, we performed
fits at NLL0, NNLL, and NNLL0 (see Sec. 2.4), and compared them to the N3LL fit. We
did not consider LL and NLL accuracies because in both cases the description of the data
is very poor (�2 & 20).

NLL0 NNLL NNLL0 N3LL

Global �2 1126 571 379 360

Table 6. Values of the global �2 of the fits at NLL0, NNLL, NNLL0, and N3LL accuracy.

Tab. 6 reports the values of the global �2 for each of the four accuracies considered.
In order to appreciate the significance of the differences,10 we have reported the absolute
values of the �2 without dividing by the number of data points Ndat. Fig. 6 shows a
graphical representation of Tab. 6. The global quality of the fit improves significantly as
the perturbative accuracy increases. In addition, Fig. 6 shows that the convergence rate
decreases when going to larger perturbative orders. On the one hand, we conclude that it
is necessary to include higher perturbative corrections to obtain a good description of the
data and that N3LL corrections are still significant. On the other hand, it appears that the
perturbative series is nicely converging and N3LL accuracy seems appropriate within the
current experimental uncertainties.

10Note that a difference of n units at the level of the global �2 roughly means a separation of around
p
n

standard deviations.
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Global Fits SV19 = Scimemi, Vladimirov  (1912.06532)
Pavia19 = Bachetta, Bertone, Bissolotti, Bozzi, Delcarro, 
                  Piacenza, Radici  (1912.07550)

Results for intrinsic TMDPDF (& TMDFF)Fit Results:

Figure 23. (left) Comparison of NNLO RAD extracted in DY fit (NNPDF31), and global fit of DY
and SIDIS (NNPDF31& DSS). Shaded area shows the 1�-uncertainty band. The dashed lines show the
extraction made in refs.[18] and [19] at LO and NNLO of RAD correspondingly. (right) Distribution of
replica points in different fits of RAD. Dashed lines show the mean values of RAD extracted in the global
fit of DY and SIDIS.

Figure 24. Example of extracted (optimal) unpolarized TMD distributions. The color indicates the
relative size of the uncertainty band

variation of BNP up to b4-corrections. The replicas of the global fit (orange points) are scattered in
a much smaller area and this provides a ⇠ 40% smaller error-bands on parameters. Generally, the
inclusion of the SIDIS data drastically constraints the values of BNP, and for that reason they are
very important for the determination of RAD. We conclude that the RAD extracted in the global
fit is more reliable, in comparison to the one done using DY data only.

The RAD that we have extracted is valid for all distributions and it has been used also to
describe the pion-induced DY [21]. For further reduction of the uncertainty of the RAD one should
consider more precise low- and intermediate-energy processes, such as up-coming JLab12 measure-
ments, and the future EIC.

– 49 –
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Quite precise determinations if we assume a given fit form.
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Global Fits
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FIG. 1. Examples of data description of SIDIS+DY N3LO
fit for HERMES SIDIS [60], COMPASS pion-induced DY [48]
and STAR W±/Z data [49]. Open symbols: data not used in
the fit. Orange line is the CF and the blue box is 68%CI.

scriptions [52], but is not consistent in the resummation-
like schemes e.g. used in Refs [30, 33, 34].

Fit of the data. The TMD factorization theorems
are derived in the limit of large-Q and a small relative
transverse momentum �, defined as � = |PhT |/(zQ) in
SIDIS, � = |qT |/Q in DY. We apply the following selec-
tion criteria [37, 38] onto the experimental data

hQi > 2 GeV and � < 0.3. (12)

The Sivers asymmetry has been measured in SIDIS and
DY [48, 49, 60–64]. In total, after data selection cuts (12),
we use 76 experimental points. We have 63 points from
SIDIS measurements collected in ⇡± and K± production
off polarized proton target at HERMES [60], off deu-
terium target from COMPASS [62], and 3He target from
JLab [64, 65], h± data on the proton target from COM-
PASS [66]. We use 13 points from DY measurements
of W±/Z production from STAR [49] and pion-induced
DY from COMPASS [48]. Let us emphasize that the re-
cent 3D binned data [60] from HERMES allowed us to
select sufficient number of data (46 points) from SIDIS
measurements. COMPASS and JLab measurements in
SIDIS are done by projecting the same data onto x, z,
and PhT . In order not to use the same data multiple
times and for better adjustment to TMD factorization
limit, we use only PhT -projections.

The evaluation of the theory prediction for a given set
of model parameters is made by artemide [67]. The es-
timation of uncertainties utilizes the replica method [68],
which consists of the fits of data replicas generated in
accordance with experimental uncertainties. From the
obtained distribution of 500 replicas, we determine the
values and the errors on parameters and observables, in-
cluding, for the first time, propagation of the errors due

(a)

(b)

FIG. 2. The three-dimensional (b, x)-landscape of the op-
timal Sivers function f?1T ;q p(x, b) for u-quark (a) and d-
quark (b). The grid shows the CF value, whereas the shaded
(blue and brown) regions on the boundaries demonstrate the
68%CI.

to the unpolarized TMDs. We use the mean value of
the resulting distributions due to SV19 uncertainty as the
central fit value (CF value), which is our best estimate of
the true values for the free parameters. The uncertainty
is given by a 68% confidence interval (68%CI) is com-
puted by the bootstrap method. The resulting replicas
are available as a part of artemide [69].

We performed several fits with different setups. In par-
ticular, we distinguish the fits with and without the in-
clusion of DY data. We found that the Sivers function
extracted in SIDIS-only fit nicely describes the DY data
without extra tuning. Indeed, N3LO SIDIS-only fit has
�2/Npt = 0.87 and without any adjustment describes also
DY data with �2/Npt = 1.23.

The combined SIDIS+DY fit reaches a very good over-
all �2/Npt = 0.88 for all 76 DY and SIDIS data points,
with �2/Npt = 0.88 for SIDIS and �2/Npt = 0.90 for DY.
Parameters of Sivers function resulting from SIDIS-only
and SIDIS+DY fits are compatible with each other [70].
The quality of data description in SIDIS+DY N3LO fit
can be seen in Fig. 1.

We have performed a fit without the sign change of
Sivers function from Eq. (1) in order to estimate the
significance of the sign change from the data. The re-
sulting fit does exhibit tensions between DY and SIDIS
data sets, however, the fit has �2/Npt = 1.0 and can-
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to the unpolarized TMDs. We use the mean value of
the resulting distributions due to SV19 uncertainty as the
central fit value (CF value), which is our best estimate of
the true values for the free parameters. The uncertainty
is given by a 68% confidence interval (68%CI) is com-
puted by the bootstrap method. The resulting replicas
are available as a part of artemide [69].

We performed several fits with different setups. In par-
ticular, we distinguish the fits with and without the in-
clusion of DY data. We found that the Sivers function
extracted in SIDIS-only fit nicely describes the DY data
without extra tuning. Indeed, N3LO SIDIS-only fit has
�2/Npt = 0.87 and without any adjustment describes also
DY data with �2/Npt = 1.23.

The combined SIDIS+DY fit reaches a very good over-
all �2/Npt = 0.88 for all 76 DY and SIDIS data points,
with �2/Npt = 0.88 for SIDIS and �2/Npt = 0.90 for DY.
Parameters of Sivers function resulting from SIDIS-only
and SIDIS+DY fits are compatible with each other [70].
The quality of data description in SIDIS+DY N3LO fit
can be seen in Fig. 1.

We have performed a fit without the sign change of
Sivers function from Eq. (1) in order to estimate the
significance of the sign change from the data. The re-
sulting fit does exhibit tensions between DY and SIDIS
data sets, however, the fit has �2/Npt = 1.0 and can-
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(µ, ⇣) of a TMD distribution is dictated by the pair of
TMD evolution equations [1, 36], which, in turn, relate
measurements made at different energies. In this work
we use the ⇣-prescription [36] which consists in selecting
the reference scale (µ, ⇣) = (µ, ⇣µ(b)) on the equipotential
line of the field anomalous dimension that passes through
the saddle point. In this case, the reference TMD distri-
bution is independent on µ (by definition) and perturba-
tively finite in the whole range of µ and b. The solution
of the evolution equations can be written [36, 45] in the
following simple form

f?1T,q h(x, b; µ, ⇣) =

✓
⇣

⇣µ(b)

◆�D(b,µ)

f?1T,q h(x, b), (5)

and similar for other TMDs. The function
f?1T,q h(x, b) = f?1T,q h(x, b; µ, ⇣µ(b)) on the right-
hand side of Eq. (5) is the optimal Sivers function [45].
The function ⇣µ(b) is a calculable function of the univer-
sal non-perturbative Collins-Soper kernel D(b, µ) [46].
The N3LO expression used in this work is given in
Ref. [37].

Drell-Yan process. The relevant part of the differen-
tial cross-section for DY reaction (h1(P1, S) + h2(P2) !

l+(l) + l�(l0) + X) is [47]

d�

dPS
= �[DY ]

0

�
F 1
UU + |ST | sin(' � �S)F 1

TU

 
, (6)

where dPS = dQ2 dy d' dq2T , �[DY ]
0 = ↵2

em(Q)/(9sQ2).
The variables ' and qT are the angle and the transverse
momentum of the electro-weak boson measured in the
center-of-mass frame and y is its rapidity. The experi-
mentally measured transverse spin asymmetry is

ATU ⌘
F 1
TU

F 1
UU

= �M
B

DY
1 [f?1T f1]

BDY
0 [f1 f1]

, (7)

where M is the mass of the polarised hadron h1, and

B
DY
n [f1 f2] ⌘

X

q

e2q

Z 1

0

bdb

2⇡
bnJn (b|qT |)

⇥ f1;q h1(x1, b; µ, ⇣1)f2;q̄ h2(x2, b; µ, ⇣2) (8)

where f1 and f2 are TMD PDFs for hadrons h1 and h2.
Often, the experiment provides measurements re-

lated to ATU (7). In particular, the process h1(P1) +
h2(P2, S) ! l+l� + X (i.e. with the polarized hadron
h2) measured by COMPASS [48] is described by AUT =
�ATU (f?1T $ f1), where the exchange of Sivers and un-
polarized TMD PDFs takes place in the numerator of (7)
and M refers to h2. Another important case is the asym-
metry AN [49] measured by STAR Collaboration and
defined such that AN = �ATU [50]. The STAR mea-
surements are made for W±/Z-boson production, and
thus B

DY
n (8) should be updated replacing

P
q e2q by an

appropriates structure, which can be found e.g. in Ref.
[37].

Non-perturbative input. In addition to the Sivers
function, SSAs (3,7) contain non-perturbative unpolar-
ized TMDs and the Collins-Soper kernel. We use these
functions from Ref. [37] (SV19). SV19 was made by the
global analysis of a large set of DY and SIDIS data, in-
cluding precise measurements made by the LHC, per-
formed with N3LO TMD evolution and NNLO match-
ing to the collinear distributions. The unpolarized TMD
PDFs for the pion were extracted in the same framework
in Ref. [38]. In these extractions the Collins-Soper kernel
is parameterized as

D(b, µ) = Dresum(b⇤, µ) + c0bb
⇤, (9)

where b⇤ = b/
q

1 +
�
b/(2 GeV�1)

�2, Dresum is the re-
summed N3LO expression for the perturbative part [51],
and c0 is a free parameter. The linear behavior at large-b
of Eq. (9) is in agreement with the predicted non pertur-
bative behavior [52, 53] and coefficient c0 can be related
to the gluon-condensate [53].

It is customary in the TMD phenomenology to match
TMDs to collinear distributions at small-b [1, 54–56]. In
the present work, we do not use the matching of the
Sivers to QS function [29, 56, 57], since it is not benefi-
cial in the Sivers case. The reason is that QS function is
not an autonomous function, but mixes with other twist-
3 distributions [58]. Therefore, a consistent implemen-
tation of the matching requires introduction of several
unknown functions – subjects of fitting. Instead, we use
the reversed procedure. We consider the optimal Sivers
function as a generic non-perturbative function that is
extracted directly from the data. QS function is then
obtained from the small-b limit of the extracted Sivers
function. For the Sivers function, we use the following
ansatz

f?1T ;q h(x, b) = Nq
(1�x)x�q (1+✏qx)

n(�q,✏q)

⇥ exp
⇣
�

r0+xr1p
1+r2x2b2

b2
⌘

, (10)

where n(�, ✏) = (3 + � + ✏ + ✏�)�(� + 1)/�(� + 4), such
that

Z 1

0
dxf?1T ;q h(x, 0) = Nq. (11)

We will distinguish separate functions for u, d, s quarks,
and a single sea Sivers function for ū, d̄ and s̄ quarks.
The Sivers function does not have the probabilistic inter-
pretation and can have nodes [59], which is realized by
the parameter ✏. We set �s = �sea and ✏s = ✏sea = 0,
since they are not restricted by the current experimental
data. In total, we have 12 free parameters in our fit.

Notice that the absence of the small-b matching is ad-
vantageous for our analysis as it allows both to circum-
vent the difficulties of evolution of QS functions and to
reach N3LO precision. Such a strategy is allowed in the ⇣-
prescription, and would also work in other fixed scale pre-
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FIG. 1. Examples of data description of SIDIS+DY N3LO
fit for HERMES SIDIS [60], COMPASS pion-induced DY [48]
and STAR W±/Z data [49]. Open symbols: data not used in
the fit. Orange line is the CF and the blue box is 68%CI.

scriptions [52], but is not consistent in the resummation-
like schemes e.g. used in Refs [30, 33, 34].

Fit of the data. The TMD factorization theorems
are derived in the limit of large-Q and a small relative
transverse momentum �, defined as � = |PhT |/(zQ) in
SIDIS, � = |qT |/Q in DY. We apply the following selec-
tion criteria [37, 38] onto the experimental data

hQi > 2 GeV and � < 0.3. (12)

The Sivers asymmetry has been measured in SIDIS and
DY [48, 49, 60–64]. In total, after data selection cuts (12),
we use 76 experimental points. We have 63 points from
SIDIS measurements collected in ⇡± and K± production
off polarized proton target at HERMES [60], off deu-
terium target from COMPASS [62], and 3He target from
JLab [64, 65], h± data on the proton target from COM-
PASS [66]. We use 13 points from DY measurements
of W±/Z production from STAR [49] and pion-induced
DY from COMPASS [48]. Let us emphasize that the re-
cent 3D binned data [60] from HERMES allowed us to
select sufficient number of data (46 points) from SIDIS
measurements. COMPASS and JLab measurements in
SIDIS are done by projecting the same data onto x, z,
and PhT . In order not to use the same data multiple
times and for better adjustment to TMD factorization
limit, we use only PhT -projections.

The evaluation of the theory prediction for a given set
of model parameters is made by artemide [67]. The es-
timation of uncertainties utilizes the replica method [68],
which consists of the fits of data replicas generated in
accordance with experimental uncertainties. From the
obtained distribution of 500 replicas, we determine the
values and the errors on parameters and observables, in-
cluding, for the first time, propagation of the errors due
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FIG. 2. The three-dimensional (b, x)-landscape of the op-
timal Sivers function f?1T ;q p(x, b) for u-quark (a) and d-
quark (b). The grid shows the CF value, whereas the shaded
(blue and brown) regions on the boundaries demonstrate the
68%CI.

to the unpolarized TMDs. We use the mean value of
the resulting distributions due to SV19 uncertainty as the
central fit value (CF value), which is our best estimate of
the true values for the free parameters. The uncertainty
is given by a 68% confidence interval (68%CI) is com-
puted by the bootstrap method. The resulting replicas
are available as a part of artemide [69].

We performed several fits with different setups. In par-
ticular, we distinguish the fits with and without the in-
clusion of DY data. We found that the Sivers function
extracted in SIDIS-only fit nicely describes the DY data
without extra tuning. Indeed, N3LO SIDIS-only fit has
�2/Npt = 0.87 and without any adjustment describes also
DY data with �2/Npt = 1.23.

The combined SIDIS+DY fit reaches a very good over-
all �2/Npt = 0.88 for all 76 DY and SIDIS data points,
with �2/Npt = 0.88 for SIDIS and �2/Npt = 0.90 for DY.
Parameters of Sivers function resulting from SIDIS-only
and SIDIS+DY fits are compatible with each other [70].
The quality of data description in SIDIS+DY N3LO fit
can be seen in Fig. 1.

We have performed a fit without the sign change of
Sivers function from Eq. (1) in order to estimate the
significance of the sign change from the data. The re-
sulting fit does exhibit tensions between DY and SIDIS
data sets, however, the fit has �2/Npt = 1.0 and can-
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FIG. 1. Examples of data description of SIDIS+DY N3LO
fit for HERMES SIDIS [60], COMPASS pion-induced DY [48]
and STAR W±/Z data [49]. Open symbols: data not used in
the fit. Orange line is the CF and the blue box is 68%CI.

scriptions [52], but is not consistent in the resummation-
like schemes e.g. used in Refs [30, 33, 34].

Fit of the data. The TMD factorization theorems
are derived in the limit of large-Q and a small relative
transverse momentum �, defined as � = |PhT |/(zQ) in
SIDIS, � = |qT |/Q in DY. We apply the following selec-
tion criteria [37, 38] onto the experimental data

hQi > 2 GeV and � < 0.3. (12)

The Sivers asymmetry has been measured in SIDIS and
DY [48, 49, 60–64]. In total, after data selection cuts (12),
we use 76 experimental points. We have 63 points from
SIDIS measurements collected in ⇡± and K± production
off polarized proton target at HERMES [60], off deu-
terium target from COMPASS [62], and 3He target from
JLab [64, 65], h± data on the proton target from COM-
PASS [66]. We use 13 points from DY measurements
of W±/Z production from STAR [49] and pion-induced
DY from COMPASS [48]. Let us emphasize that the re-
cent 3D binned data [60] from HERMES allowed us to
select sufficient number of data (46 points) from SIDIS
measurements. COMPASS and JLab measurements in
SIDIS are done by projecting the same data onto x, z,
and PhT . In order not to use the same data multiple
times and for better adjustment to TMD factorization
limit, we use only PhT -projections.

The evaluation of the theory prediction for a given set
of model parameters is made by artemide [67]. The es-
timation of uncertainties utilizes the replica method [68],
which consists of the fits of data replicas generated in
accordance with experimental uncertainties. From the
obtained distribution of 500 replicas, we determine the
values and the errors on parameters and observables, in-
cluding, for the first time, propagation of the errors due

(a)

(b)

FIG. 2. The three-dimensional (b, x)-landscape of the op-
timal Sivers function f?1T ;q p(x, b) for u-quark (a) and d-
quark (b). The grid shows the CF value, whereas the shaded
(blue and brown) regions on the boundaries demonstrate the
68%CI.

to the unpolarized TMDs. We use the mean value of
the resulting distributions due to SV19 uncertainty as the
central fit value (CF value), which is our best estimate of
the true values for the free parameters. The uncertainty
is given by a 68% confidence interval (68%CI) is com-
puted by the bootstrap method. The resulting replicas
are available as a part of artemide [69].

We performed several fits with different setups. In par-
ticular, we distinguish the fits with and without the in-
clusion of DY data. We found that the Sivers function
extracted in SIDIS-only fit nicely describes the DY data
without extra tuning. Indeed, N3LO SIDIS-only fit has
�2/Npt = 0.87 and without any adjustment describes also
DY data with �2/Npt = 1.23.

The combined SIDIS+DY fit reaches a very good over-
all �2/Npt = 0.88 for all 76 DY and SIDIS data points,
with �2/Npt = 0.88 for SIDIS and �2/Npt = 0.90 for DY.
Parameters of Sivers function resulting from SIDIS-only
and SIDIS+DY fits are compatible with each other [70].
The quality of data description in SIDIS+DY N3LO fit
can be seen in Fig. 1.

We have performed a fit without the sign change of
Sivers function from Eq. (1) in order to estimate the
significance of the sign change from the data. The re-
sulting fit does exhibit tensions between DY and SIDIS
data sets, however, the fit has �2/Npt = 1.0 and can-
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